Last updated: 2022-04-11

Checks: 7 0

Knit directory: Code/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211230) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e47dde2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    Flexibility Comparisons.nb.html
    Ignored:    Main.nb.html
    Ignored:    PGLS.FullData.nb.html
    Ignored:    PGLSforeachMeasFeature.nb.html
    Ignored:    PGLSwithPCA_Dims.nb.html
    Ignored:    PreppedVertMeas.nb.html
    Ignored:    ProcessCymatogasterFiles.nb.html
    Ignored:    ProcessFCSVfiles.nb.html
    Ignored:    TestingHabitatwithFriedmanData.nb.html
    Ignored:    Trilok_tree.nb.html
    Ignored:    VertLM.nb.html
    Ignored:    VertMeasLDA_Attempt.nb.html
    Ignored:    VertPGLS.nb.html
    Ignored:    VertPairs.nb.html
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/10-VertLM.nb.html
    Ignored:    analysis/20-plot_phylogeny.nb.html
    Ignored:    analysis/21-plot_fits_and_summary.nb.html
    Ignored:    analysis/CheckSpeciesMatch.nb.html
    Ignored:    caper_test.nb.html
    Ignored:    data/.DS_Store
    Ignored:    ggtree_attempt.nb.html
    Ignored:    plot_example_data.nb.html
    Ignored:    plot_fits_and_summary.nb.html
    Ignored:    plot_phylogeny.nb.html
    Ignored:    renv/library/
    Ignored:    renv/staging/
    Ignored:    summarize_vert_meas.nb.html
    Ignored:    test_phylogeny.nb.html
    Ignored:    test_vertebraspace.nb.html
    Ignored:    vert_evol.Rproj

Untracked files:
    Untracked:  Main.html
    Untracked:  ProcessFCSVfiles.Rmd
    Untracked:  VertPGLS.html
    Untracked:  gg_saver.R
    Untracked:  output/BodyDistribution.pdf
    Untracked:  output/MasterVert_Measurements.csv
    Untracked:  output/mean_d_alphaPos_CBL.pdf
    Untracked:  output/pair_plot.pdf
    Untracked:  output/plot_example_data_figure.pdf
    Untracked:  output/stats_table.rtf
    Untracked:  plot_fits_and_summary.Rmd
    Untracked:  summarize_vert_meas.html
    Untracked:  testtree.csv
    Untracked:  vert_tree.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/21-plot_fits_and_summary.Rmd) and HTML (docs/21-plot_fits_and_summary.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 23908bd Eric Tytell 2021-12-30 Test site build again
Rmd edeae3c Eric Tytell 2021-12-30 Rename notebooks to indicate order

library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
✓ ggplot2 3.3.5     ✓ purrr   0.3.4
✓ tibble  3.1.4     ✓ dplyr   1.0.7
✓ tidyr   1.1.3     ✓ stringr 1.4.0
✓ readr   2.0.1     ✓ forcats 0.5.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
library(ggbeeswarm)
library(patchwork)
library(emmeans)
library(gt)
library(here)
here() starts at /Users/etytel01/Documents/Vertebrae/Code
vertdata <- read_csv(here("output/vertdata_summary_lm_species.csv"))
Rows: 77 Columns: 99
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (7): Species, Habitat, Water_Type, MatchSpecies, MatchGenus, FullName, ...
dbl (92): fineness, CBL_med, CBL_max, CBL_mn, d_med, d_max, d_mn, alphaAnt_m...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
PGLSmodels <- readRDS(here('output/PGLSmodels.Rds'))
vertdata_all <- read_csv(here("output/vertdata_centered.csv"))
Rows: 571 Columns: 71
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (17): Species, MatchGenus, MatchSpecies, Family, BodyShape, Habitat_Init...
dbl (54): Indiv, Pos, SL, CBL_old_raw, alpha_Pos_raw, d_raw, D_Pos_raw, alph...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
modeltests <- read_csv(here("output/modeltests.csv"))
Rows: 19 Columns: 19
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (2): var, term
dbl (16): p.value, total_eff, benthic_demersal_p, benthic_pelagic_p, demersa...
lgl  (1): model

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
overallmeans <-
  vertdata %>%
  group_by(Habitat) %>%
  dplyr::summarize(across(c(alphaPos_mn, alphaAnt_mn, CBL_mn, d_mn, DAnt_mn, DPos_mn,
                     alphaPos_80, alphaAnt_80, CBL_80, d_80, DAnt_80, DPos_80,
                     alphaPos_vtx, alphaAnt_vtx, CBL_vtx, d_vtx, DAnt_vtx, DPos_vtx,
                     alphaPos_quad, alphaAnt_quad, CBL_quad, d_quad, DAnt_quad, DPos_quad), 
                   list(mn = mean, se = ~ sd(.x) / sqrt(length(.x)))))

overallmeans
# A tibble: 3 × 49
  Habitat  alphaPos_mn_mn alphaPos_mn_se alphaAnt_mn_mn alphaAnt_mn_se CBL_mn_mn
  <chr>             <dbl>          <dbl>          <dbl>          <dbl>     <dbl>
1 benthic            67.5           2.39           71.5           2.54    0.0219
2 demersal           70.6           2.87           74.9           2.70    0.0229
3 pelagic            63.9           3.03           66.8           2.95    0.0249
# … with 43 more variables: CBL_mn_se <dbl>, d_mn_mn <dbl>, d_mn_se <dbl>,
#   DAnt_mn_mn <dbl>, DAnt_mn_se <dbl>, DPos_mn_mn <dbl>, DPos_mn_se <dbl>,
#   alphaPos_80_mn <dbl>, alphaPos_80_se <dbl>, alphaAnt_80_mn <dbl>,
#   alphaAnt_80_se <dbl>, CBL_80_mn <dbl>, CBL_80_se <dbl>, d_80_mn <dbl>,
#   d_80_se <dbl>, DAnt_80_mn <dbl>, DAnt_80_se <dbl>, DPos_80_mn <dbl>,
#   DPos_80_se <dbl>, alphaPos_vtx_mn <dbl>, alphaPos_vtx_se <dbl>,
#   alphaAnt_vtx_mn <dbl>, alphaAnt_vtx_se <dbl>, CBL_vtx_mn <dbl>, …
modelmeans <-
  modeltests %>%
  select(var, ends_with("mn"), ends_with("se")) %>%
  pivot_longer(ends_with("mn") | ends_with("se"), names_to = "HabitatEff", values_to = "value") %>%
  separate(HabitatEff, sep = "_", into = c("Habitat", "Eff")) %>%
  unite(var, c(var, Eff)) %>%
  pivot_wider(names_from = var, values_from = value)

modelmeans
# A tibble: 3 × 39
  Habitat  alphaPos_mn_mn alphaPos_mn_se CBL_quad_mn CBL_quad_se d_mn_mn d_mn_se
  <chr>             <dbl>          <dbl>       <dbl>       <dbl>   <dbl>   <dbl>
1 benthic            97.4           13.5    -0.0228       0.0386 0.00313 9.70e-4
2 demersal           88.7           13.3    -0.0288       0.0381 0.00303 9.58e-4
3 pelagic            84.0           13.7     0.00649      0.0392 0.00234 9.84e-4
# … with 32 more variables: d_vtx_mn <dbl>, d_vtx_se <dbl>, CBL_vtx_mn <dbl>,
#   CBL_vtx_se <dbl>, alphaAnt_mn_mn <dbl>, alphaAnt_mn_se <dbl>,
#   DAnt_quad_mn <dbl>, DAnt_quad_se <dbl>, alphaAnt_quad_mn <dbl>,
#   alphaAnt_quad_se <dbl>, DPos_quad_mn <dbl>, DPos_quad_se <dbl>,
#   fineness_mn <dbl>, fineness_se <dbl>, alphaPos_quad_mn <dbl>,
#   alphaPos_quad_se <dbl>, DPos_mn_mn <dbl>, DPos_mn_se <dbl>,
#   DAnt_mn_mn <dbl>, DAnt_mn_se <dbl>, alphaPos_vtx_mn <dbl>, …
reversemeasurements <- function(df) {
  df %>%
    mutate(Pt1x = DPos / 2 / tan(alphaPos/2 * pi/180),
           Pt2x = DPos / 2 / tan(alphaPos/2 * pi/180),
           Pt3x = -DAnt / 2 / tan(alphaAnt/2 * pi/180),
           Pt4x = -DAnt / 2 / tan(alphaAnt/2 * pi/180),
           Pt5x = 0,
           Pt6x = 0,
           Pt7x = 0,
           Pt8x = d/2 * tan(alphaPos/2 * pi/180),
           Pt9x = d/2 * tan(alphaPos/2 * pi/180),
           Pt10x = -d/2 * tan(alphaAnt/2 * pi/180),
           Pt11x = -d/2 * tan(alphaAnt/2 * pi/180),
           Pt1y = DPos / 2,
           Pt2y = -DPos / 2,
           Pt3y = DAnt / 2,
           Pt4y = -DAnt / 2,
           Pt5y = 0,
           Pt6y = d / 2,
           Pt7y = -d / 2,
           Pt8y = d / 2,
           Pt9y = -d / 2,
           Pt10y = d / 2,
           Pt11y = -d / 2)
}
vertshape <-
  modelmeans %>%
  rename_with(~ str_replace(.x, "_mn_mn", "")) %>%
  reversemeasurements()
vertshape <-
  vertshape %>%
  mutate(Shape1x = Pt1x,
         Shape2x = Pt2x,
         Shape3x = Pt9x,
         Shape4x = Pt11x,
         Shape5x = Pt4x,
         Shape6x = Pt3x,
         Shape7x = Pt10x,
         Shape8x = Pt8x,
         Shape9x = Pt1x,
         Shape1y = Pt1y,
         Shape2y = Pt2y,
         Shape3y = Pt9y,
         Shape4y = Pt11y,
         Shape5y = Pt4y,
         Shape6y = Pt3y,
         Shape7y = Pt10y,
         Shape8y = Pt8y,
         Shape9y = Pt1y)
vertshape <-
  vertshape %>%
  select(!starts_with("Pt")) %>%
  pivot_longer(starts_with("Shape"), names_to = "Pt", values_to = "value") %>%
  extract(Pt, into = c("Num", "XY"), regex = "Shape(\\d+)(x|y)") %>%
  pivot_wider(names_from = XY, values_from = value)
vertshape_panel <-
  vertshape %>%
  ggplot(aes(x = x, y = y, color = Habitat, fill = Habitat)) +
  geom_path() +
  geom_polygon(alpha = 0.2) +
  coord_fixed() +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2"),
                     guide = "none") +
  scale_fill_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2"),
                     guide = "none") +
  annotate("line", x = c(0.01, 0.01), y = c(-0.003, -0.007), color = "black") +
  annotate("text", x = 0.01, y = -0.005, label = "0.004 BL", angle=90, size=4, vjust = 1.3) +
  theme_minimal() +
  theme(line = element_blank(),
        text = element_blank(),
        title = element_blank())

vertshape_panel

modeltests %>%
  filter(str_detect(var, "alphaPos_mn") | str_detect(var, "d_mn")) %>%
  arrange(var)
# A tibble: 2 × 19
  var           p.value total_eff benthic_demersa… benthic_pelagic… demersal_pelagi…
  <chr>           <dbl>     <dbl>            <dbl>            <dbl>            <dbl>
1 alphaPos_mn 0.0000437     1.05          0.000899          0.00191           0.413 
2 d_mn        0.0135        0.860         0.805             0.0132            0.0310
# … with 13 more variables: statistic <dbl>, term <chr>, df <dbl>, model <lgl>,
#   benthic_demersal_eff <dbl>, benthic_pelagic_eff <dbl>,
#   demersal_pelagic_eff <dbl>, benthic_mn <dbl>, demersal_mn <dbl>,
#   pelagic_mn <dbl>, benthic_se <dbl>, demersal_se <dbl>, pelagic_se <dbl>
dyl = 0.0005
yl = max(vertdata$d_mn) + dyl

d_mn_panel <- ggplot(vertdata, aes(x = Habitat, y = d_mn, color = Habitat, shape = Habitat)) +
  geom_quasirandom(width=0.3, alpha = 0.5) +
  geom_line(data = modelmeans, aes(x = Habitat, y = d_mn_mn, group = 1), color = "black") +
  geom_pointrange(data = modelmeans, 
                  aes(x = Habitat, y = d_mn_mn, 
                      ymin = d_mn_mn - d_mn_se, ymax = d_mn_mn + d_mn_se), size = 0.8) +
  annotate("line", x = c(2,3), y = c(yl, yl), color = "black") +
  annotate("text", x = 2.5, y = yl, label = "* 0.37", size = 3, vjust = -0.2) +
  annotate("line", x = c(1,3), y = c(yl + dyl, yl + dyl), color = "black") +
  annotate("text", x = 2, y = yl+dyl, label = "* 0.43", size = 3, vjust = -0.2) +
  labs(y = "Mean foramen\ndiameter (BL)") +
  scale_x_discrete(labels = c("b", "d", "p")) +
  scale_shape_manual(values = c(15, 19, 4)) +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  theme_bw() + theme(aspect.ratio = 0.7)

d_mn_panel

dyl = 5
yl = max(vertdata$alphaPos_mn) + dyl

alphaPos_mn_panel <- ggplot(vertdata, aes(x = Habitat, y = alphaPos_mn, color = Habitat, shape = Habitat)) +
  geom_quasirandom(width=0.3, alpha = 0.5) +
  geom_line(data = modelmeans, aes(x = Habitat, y = alphaPos_mn_mn, group = 1), color = "black") +
  geom_pointrange(data = modelmeans, 
                  aes(x = Habitat, y = alphaPos_mn_mn, 
                      ymin = alphaPos_mn_mn - alphaPos_mn_se, ymax = alphaPos_mn_mn + alphaPos_mn_se), size = 0.8) +
  annotate("line", x = c(1,2), y = c(yl, yl), color = "black") +
  annotate("text", x = 1.5, y = yl, label = "*** 0.34", size = 3, vjust = -0.2) +
  annotate("line", x = c(1,3), y = c(yl + dyl, yl + dyl), color = "black") +
  annotate("text", x = 2, y = yl+dyl, label = "** 0.52", size = 3, vjust = -0.2) +
  labs(y = "Mean posterior\ncone angle (deg)") +
  scale_x_discrete(labels = c("b", "d", "p")) +
  scale_shape_manual(values = c(15, 19, 4)) +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  theme_bw() + theme(aspect.ratio = 0.7)

alphaPos_mn_panel

dyl = 0
yl = max(vertdata$CBL_mn) + dyl

CBL_mn_panel <- ggplot(vertdata, aes(x = Habitat, y = CBL_mn, color = Habitat, shape = Habitat)) +
  geom_quasirandom(width=0.3, alpha = 0.5) +
  geom_line(data = modelmeans, aes(x = Habitat, y = CBL_mn_mn, group = 1), color = "black") +
  geom_pointrange(data = modelmeans, 
                  aes(x = Habitat, y = CBL_mn_mn, 
                      ymin = CBL_mn_mn - CBL_mn_se, ymax = CBL_mn_mn + CBL_mn_se), size = 0.8) +
  #annotate("line", x = c(1,2), y = c(yl, yl), color = "black") +
  #annotate("text", x = 1.5, y = yl, label = "*** 0.34", size = 3, vjust = -0.2) +
  #annotate("line", x = c(1,3), y = c(yl + dyl, yl + dyl), color = "black") +
  #annotate("text", x = 2, y = yl+dyl, label = "** 0.52", size = 3, vjust = -0.2) +
  labs(y = "Centrum body\nlength (BL)") +
  scale_x_discrete(labels = c("b", "d", "p")) +
  scale_shape_manual(values = c(15, 19, 4)) +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  theme_bw() + theme(aspect.ratio = 0.7)

CBL_mn_panel

alphaPos_mn_panel / d_mn_panel / CBL_mn_panel / vertshape_panel + 
  plot_annotation(tag_levels = 'A') +
  plot_layout(guides = 'collect') &
  theme(legend.position = "bottom",
        panel.border = element_blank(), axis.line = element_line())

ggsave(here('output/mean_d_alphaPos_CBL.pdf'), width = 3, units = "in")
Saving 3 x 5 in image

Distribution along the body

Posterior cone angle

alphaPosvPosPanel <-
  vertdata_all %>%
  filter(Pos >= 0.4) %>%
  ggplot(aes(x = Pos, y = alphaPos, color=Habitat, fill=Habitat, group=Habitat)) +
    stat_summary(fun.data = "mean_se", geom="ribbon", alpha=0.5) +
    stat_summary(fun = "mean", geom="line") +
  scale_shape_manual(values = c(15, 19, 4)) +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  scale_fill_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  labs(x = "Position (BL)", y = "Posterior cone\nangle (deg)") +
  theme_bw() + theme(aspect.ratio = 0.7)

alphaPosvPosPanel

Centrum body length

modeltests %>%
  filter(str_detect(var, "CBL")) %>%
  arrange(var)
# A tibble: 3 × 19
  var      p.value total_eff benthic_demersal… benthic_pelagic… demersal_pelagi…
  <chr>      <dbl>     <dbl>             <dbl>            <dbl>            <dbl>
1 CBL_mn   0.316       0.281             0.327           0.610           0.997  
2 CBL_quad 0.00385     0.963             0.635           0.0231          0.00378
3 CBL_vtx  0.0404      0.730             0.670           0.133           0.0359 
# … with 13 more variables: statistic <dbl>, term <chr>, df <dbl>, model <lgl>,
#   benthic_demersal_eff <dbl>, benthic_pelagic_eff <dbl>,
#   demersal_pelagic_eff <dbl>, benthic_mn <dbl>, demersal_mn <dbl>,
#   pelagic_mn <dbl>, benthic_se <dbl>, demersal_se <dbl>, pelagic_se <dbl>
CBLvPosPanel <-
  vertdata_all %>%
  filter(Pos >= 0.4) %>%
  ggplot(aes(x = Pos, y = CBL, color=Habitat, fill=Habitat, group=Habitat)) +
    stat_summary(fun.data = "mean_se", geom="ribbon", alpha=0.5) +
    stat_summary(fun = "mean", geom="line") +
  scale_shape_manual(values = c(15, 19, 4)) +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  scale_fill_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  labs(x = "Position (BL)", y = "Centrum body\nlength (BL)") +
  theme_bw() + theme(aspect.ratio = 0.7)

CBLvPosPanel

dyl = 1
yl = max(vertdata$CBL_vtx) + dyl

CBLvtxPanel <- ggplot(vertdata, aes(x = Habitat, y = CBL_vtx, color = Habitat, shape = Habitat)) +
  geom_quasirandom(width=0.3, alpha = 0.5) +
  geom_line(data = modelmeans, aes(x = Habitat, y = CBL_vtx_mn, group = 1), color = "black") +
  geom_pointrange(data = modelmeans, 
                  aes(x = Habitat, y = CBL_vtx_mn, 
                      ymin = CBL_vtx_mn - CBL_vtx_se, ymax = CBL_vtx_mn + CBL_vtx_se), size = 0.8) +
  #annotate("line", x = c(1,2), y = c(yl, yl), color = "black") +
  #annotate("text", x = 1.5, y = yl, label = "*** 0.34", size = 3, vjust = -0.2) +
  annotate("line", x = c(2,3), y = c(yl + dyl, yl + dyl), color = "black") +
  annotate("text", x = 2.5, y = yl+dyl, label = "* 0.36", size = 3, vjust = -0.2) +
  labs(y = "Fit location of\nlongest vertebra (BL)") +
  scale_x_discrete(labels = c("b", "d", "p")) +
  scale_shape_manual(values = c(15, 19, 4)) +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  theme_bw() # + theme(aspect.ratio = 0.7)

CBLvtxPanel

dyl = 0.01
yl = max(vertdata$CBL_quad) + dyl

CBLquadPanel <- ggplot(vertdata, aes(x = Habitat, y = CBL_quad, color = Habitat, shape = Habitat)) +
  geom_quasirandom(width=0.3, alpha = 0.5) +
  geom_line(data = modelmeans, aes(x = Habitat, y = CBL_quad_mn, group = 1), color = "black") +
  geom_pointrange(data = modelmeans, 
                  aes(x = Habitat, y = CBL_quad_mn, 
                      ymin = CBL_quad_mn - CBL_quad_se, ymax = CBL_quad_mn + CBL_quad_se), size = 0.8) +
  annotate("line", x = c(2,3), y = c(yl, yl), color = "black") +
  annotate("text", x = 2.5, y = yl, label = "** -0.48", size = 3, vjust = -0.2) +
  annotate("line", x = c(1,3), y = c(yl + dyl, yl + dyl), color = "black") +
  annotate("text", x = 2, y = yl+dyl, label = "* -0.40", size = 3, vjust = -0.2) +
  labs(y = "Centrum body length\nquad. coeff. (BL^2)") +
  scale_x_discrete(labels = c("b", "d", "p")) +
  scale_shape_manual(values = c(15, 19, 4)) +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  theme_bw() # + theme(aspect.ratio = 0.7)

CBLquadPanel

Foramen diameter

dvPosPanel <-
  vertdata_all %>%
  filter(Pos >= 0.4) %>%
  ggplot(aes(x = Pos, y = d, color=Habitat, fill=Habitat, group=Habitat)) +
    stat_summary(fun.data = "mean_se", geom="ribbon", alpha=0.5) +
    stat_summary(fun = "mean", geom="line") +
  scale_shape_manual(values = c(15, 19, 4)) +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  scale_fill_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  labs(x = "Position (BL)", y = "Foramen\ndiameter (BL)") +
  theme_bw() + theme(aspect.ratio = 0.7)

dvPosPanel

modeltests %>%
  filter(str_detect(var, "d_")) %>%
  arrange(var)
# A tibble: 3 × 19
  var      p.value total_eff benthic_demersal… benthic_pelagic… demersal_pelagi…
  <chr>      <dbl>     <dbl>             <dbl>            <dbl>            <dbl>
1 d_mn   0.0135        0.860         0.805               0.0132           0.0310
2 d_quad 0.436         0.220         0.446               1.00             0.745 
3 d_vtx  0.0000251     0.799         0.0000937           0.0239           1.00  
# … with 13 more variables: statistic <dbl>, term <chr>, df <dbl>, model <lgl>,
#   benthic_demersal_eff <dbl>, benthic_pelagic_eff <dbl>,
#   demersal_pelagic_eff <dbl>, benthic_mn <dbl>, demersal_mn <dbl>,
#   pelagic_mn <dbl>, benthic_se <dbl>, demersal_se <dbl>, pelagic_se <dbl>
dyl = 1
yl = max(vertdata$d_vtx) + dyl

dvtxPanel <- ggplot(vertdata, aes(x = Habitat, y = d_vtx, color = Habitat, shape = Habitat)) +
  geom_quasirandom(width=0.3, alpha = 0.5) +
  geom_line(data = modelmeans, aes(x = Habitat, y = d_vtx_mn, group = 1), color = "black") +
  geom_pointrange(data = modelmeans, 
                  aes(x = Habitat, y = d_vtx_mn, 
                      ymin = d_vtx_mn - d_vtx_se, ymax = d_vtx_mn + d_vtx_se), size = 0.8) +
  annotate("line", x = c(1,2), y = c(yl, yl), color = "black") +
  annotate("text", x = 1.5, y = yl, label = "*** -0.40", size = 3, vjust = -0.2) +
  annotate("line", x = c(1,3), y = c(yl + dyl, yl + dyl), color = "black") +
  annotate("text", x = 2, y = yl+dyl, label = "* -0.40", size = 3, vjust = -0.2) +
  labs(y = "Fit location of\nlargest foramen (BL)") +
  scale_x_discrete(labels = c("b", "d", "p")) +
  scale_shape_manual(values = c(15, 19, 4)) +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  theme_bw() # + theme(aspect.ratio = 0.7)

dvtxPanel

dyl = 0.01
yl = max(vertdata$d_quad) + dyl

dQuadPanel <- ggplot(vertdata, aes(x = Habitat, y = d_quad, color = Habitat, shape = Habitat)) +
  geom_quasirandom(width=0.3, alpha = 0.5) +
  geom_line(data = modelmeans, aes(x = Habitat, y = d_quad_mn, group = 1), color = "black") +
  geom_pointrange(data = modelmeans, 
                  aes(x = Habitat, y = d_quad_mn, 
                      ymin = d_quad_mn - d_quad_se, ymax = d_quad_mn + d_quad_se), size = 0.8) +
  #annotate("line", x = c(2,3), y = c(yl, yl), color = "black") +
  #annotate("text", x = 2.5, y = yl, label = "** -0.48", size = 3, vjust = -0.2) +
  #annotate("line", x = c(1,3), y = c(yl + dyl, yl + dyl), color = "black") +
  #annotate("text", x = 2, y = yl+dyl, label = "* -0.40", size = 3, vjust = -0.2) +
  labs(y = "Foramen diameter\nquad. coeff. (BL^2)") +
  scale_x_discrete(labels = c("b", "d", "p")) +
  scale_shape_manual(values = c(15, 19, 4)) +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  theme_bw() # + theme(aspect.ratio = 0.7)

dQuadPanel

Combined figure

alphaPosvPosPanel / dvPosPanel / CBLvPosPanel + plot_annotation(tag_levels = 'A') +
  plot_layout(guides = 'collect') &
  theme(legend.position = "bottom",
        panel.border = element_blank(), axis.line = element_line())

ggsave(here('output/BodyDistribution.pdf'), width = 3, units = "in")
Saving 3 x 5 in image
PGLSmodels
# A tibble: 19 × 19
   var             p.value total_eff benthic_demersa… benthic_pelagic… demersal_pelagi…
   <chr>             <dbl>     <dbl>            <dbl>            <dbl>            <dbl>
 1 alphaPos_mn   0.0000437     1.05         0.000899           0.00191          0.413  
 2 CBL_quad      0.00385       0.963        0.635              0.0231           0.00378
 3 d_mn          0.0135        0.860        0.805              0.0132           0.0310 
 4 d_vtx         0.0000251     0.799        0.0000937          0.0239           1.00   
 5 CBL_vtx       0.0404        0.730        0.670              0.133            0.0359 
 6 alphaAnt_mn   0.0948        0.626        0.884              0.168            0.0836 
 7 DAnt_quad     0.208         0.524        0.855              0.186            0.306  
 8 alphaAnt_quad 0.167         0.521        0.556              0.499            0.175  
 9 DPos_quad     0.271         0.472        0.947              0.253            0.326  
10 fineness      0.279         0.456        0.788              0.492            0.260  
11 alphaPos_quad 0.216         0.448        0.452              0.718            0.274  
12 DPos_mn       0.340         0.410        0.735              0.623            0.336  
13 DAnt_mn       0.413         0.384        0.918              0.544            0.384  
14 alphaPos_vtx  0.495         0.327        0.713              0.514            0.798  
15 CBL_mn        0.316         0.281        0.327              0.610            0.997  
16 DPos_vtx      0.516         0.237        0.549              0.703            0.985  
17 d_quad        0.436         0.220        0.446              1.00             0.745  
18 alphaAnt_vtx  0.691         0.178        0.738              0.988            0.812  
19 DAnt_vtx      0.923         0.115        0.987              0.954            0.917  
# … with 13 more variables: statistic <dbl>, term <chr>, df <dbl>,
#   model <list>, benthic_demersal_eff <dbl>, benthic_pelagic_eff <dbl>,
#   demersal_pelagic_eff <dbl>, benthic_mn <dbl>, demersal_mn <dbl>,
#   pelagic_mn <dbl>, benthic_se <dbl>, demersal_se <dbl>, pelagic_se <dbl>
tab <-
  PGLSmodels %>%
  select(var, statistic, p.value, ends_with("eff"), -total_eff) %>%
  separate(var, into = c("var", "posstat")) %>%
  mutate(posstat = if_else(var == "fineness", "mn", posstat)) %>%
  # group_by(var) %>%
  # group_modify(~ add_row(.x,.before=0)) %>%
  # mutate(posstat = if_else(is.na(posstat), "x", posstat)) %>%
  mutate(posstat = factor(posstat, levels = c("x", "mn", "vtx", "quad")),
         posstat = fct_recode(posstat, x = "x", mean = "mn", vertex = "vtx", "quad. coef." = "quad")) %>%
  ungroup() %>%
  mutate(var = case_when(
    var == "alphaAnt"   ~   "Anterior cone angle",
    var == "alphaPos"   ~   "Posterior cone angle",
    var == "CBL"   ~   "Centrum body length",
    var == "DAnt"   ~   "Anterior cone diameter",
    var == "DPos"   ~   "Posterior cone diameter",
    var == "d"   ~   "Foramen diameter",
    var == "fineness"   ~   "Fineness"
  )) %>%
  arrange(var, posstat) %>%
  gt(
    groupname_col = "var",
    rowname_col = "posstat"
  ) %>%
  fmt_number(
    columns = "statistic",
    suffixing = FALSE,
    n_sigfig = 2
  ) %>%
  fmt_number(
    columns = "p.value",
    decimals = 3
  ) %>%
  fmt_number(
    columns = c("benthic_demersal_eff", "benthic_pelagic_eff", "demersal_pelagic_eff"),
    decimals = 2,
    force_sign = TRUE
  ) %>%
  tab_style(
    style = cell_text(weight = "bold"),
    locations = cells_body(rows = p.value < 0.05)
  ) %>%
  cols_label(
    var = md("Measurement"),
    posstat = "",
    statistic = md("F2,74"),
    p.value = md("p"),
    benthic_demersal_eff = md("b - d"),
    benthic_pelagic_eff = md("b - p"),
    demersal_pelagic_eff = md("d - p")
  ) %>%
  tab_style(
    locations = cells_column_labels(columns = c("var", "posstat", "statistic", "p.value")),
    style = cell_text(v_align = "middle",
                      align = "center")
  ) %>%
  tab_stubhead("Measurement") %>%
  tab_style(
    locations = cells_stubhead(),
    style = cell_text(v_align = "middle")
  ) %>%
  tab_spanner(
    label = "Effect sizes",
    columns = c("benthic_demersal_eff", "benthic_pelagic_eff", "demersal_pelagic_eff")
  ) %>%
  fmt_missing(columns = 1:7,
              missing_text = "")
Warning: Expected 2 pieces. Missing pieces filled with `NA` in 1 rows [10].
tab
Measurement F2,74 p Effect sizes
b - d b - p d - p
Anterior cone angle
mean 4.7 0.095 −0.04 +0.27 +0.31
vertex 0.74 0.691 −0.07 +0.02 +0.09
quad. coef. 3.6 0.167 −0.09 +0.17 +0.26
Anterior cone diameter
mean 1.8 0.413 −0.04 +0.16 +0.19
vertex 0.16 0.923 +0.01 −0.04 −0.06
quad. coef. 3.1 0.208 −0.05 −0.26 −0.21
Centrum body length
mean 2.3 0.316 −0.13 −0.14 −0.01
vertex 6.4 0.040 −0.08 +0.29 +0.36
quad. coef. 11 0.004 +0.08 −0.40 −0.48
Fineness
mean 2.6 0.279 +0.06 −0.17 −0.23
Foramen diameter
mean 8.6 0.014 +0.06 +0.43 +0.37
vertex 21 0.000 −0.40 −0.40 +0.00
quad. coef. 1.7 0.436 +0.11 +0.00 −0.11
Posterior cone angle
mean 20 0.000 +0.34 +0.53 +0.18
vertex 1.4 0.495 +0.07 +0.16 +0.09
quad. coef. 3.1 0.216 −0.11 +0.12 +0.22
Posterior cone diameter
mean 2.2 0.340 −0.07 +0.14 +0.21
vertex 1.3 0.516 +0.09 +0.12 +0.02
quad. coef. 2.6 0.271 −0.03 −0.24 −0.21
gtsave(tab, here("output/stats_table.rtf"))

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] here_1.0.1       gt_0.3.1         emmeans_1.6.3    patchwork_1.1.1 
 [5] ggbeeswarm_0.6.0 forcats_0.5.1    stringr_1.4.0    dplyr_1.0.7     
 [9] purrr_0.3.4      readr_2.0.1      tidyr_1.1.3      tibble_3.1.4    
[13] ggplot2_3.3.5    tidyverse_1.3.1 

loaded via a namespace (and not attached):
 [1] fs_1.5.0         lubridate_1.7.10 bit64_4.0.5      httr_1.4.2      
 [5] rprojroot_2.0.2  tools_4.1.2      backports_1.2.1  utf8_1.2.2      
 [9] R6_2.5.1         vipor_0.4.5      DBI_1.1.1        colorspace_2.0-2
[13] withr_2.4.2      tidyselect_1.1.1 bit_4.0.4        compiler_4.1.2  
[17] git2r_0.29.0     cli_3.0.1        rvest_1.0.1      xml2_1.3.2      
[21] sass_0.4.0       labeling_0.4.2   scales_1.1.1     checkmate_2.0.0 
[25] mvtnorm_1.1-2    commonmark_1.7   digest_0.6.27    rmarkdown_2.10  
[29] pkgconfig_2.0.3  htmltools_0.5.2  dbplyr_2.1.1     fastmap_1.1.0   
[33] highr_0.9        rlang_0.4.11     readxl_1.3.1     rstudioapi_0.13 
[37] generics_0.1.0   farver_2.1.0     jsonlite_1.7.2   vroom_1.5.4     
[41] magrittr_2.0.1   Rcpp_1.0.7       munsell_0.5.0    fansi_0.5.0     
[45] lifecycle_1.0.0  stringi_1.7.4    whisker_0.4      yaml_2.2.1      
[49] grid_4.1.2       parallel_4.1.2   promises_1.2.0.1 crayon_1.4.1    
[53] lattice_0.20-45  haven_2.4.3      hms_1.1.0        knitr_1.34      
[57] pillar_1.6.2     estimability_1.3 reprex_2.0.1     glue_1.4.2      
[61] evaluate_0.14    renv_0.14.0      modelr_0.1.8     vctrs_0.3.8     
[65] tzdb_0.1.2       httpuv_1.6.4     cellranger_1.1.0 gtable_0.3.0    
[69] assertthat_0.2.1 xfun_0.25        xtable_1.8-4     broom_0.7.9     
[73] coda_0.19-4      later_1.3.0      beeswarm_0.4.0   workflowr_1.7.0 
[77] ellipsis_0.3.2