Last updated: 2022-10-23

Checks: 7 0

Knit directory: Code/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211230) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bbb4c58. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    Flexibility Comparisons.nb.html
    Ignored:    Main.nb.html
    Ignored:    PGLS.FullData.nb.html
    Ignored:    PGLSforeachMeasFeature.nb.html
    Ignored:    PGLSwithPCA_Dims.nb.html
    Ignored:    PreppedVertMeas.nb.html
    Ignored:    ProcessCymatogasterFiles.nb.html
    Ignored:    ProcessFCSVfiles.nb.html
    Ignored:    TestingHabitatwithFriedmanData.nb.html
    Ignored:    Trilok_tree.nb.html
    Ignored:    VertLM.nb.html
    Ignored:    VertMeasLDA_Attempt.nb.html
    Ignored:    VertPGLS.nb.html
    Ignored:    VertPairs.nb.html
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/02-CheckSpeciesMatch.nb.html
    Ignored:    analysis/10-VertLM.nb.html
    Ignored:    analysis/12-VertPGLS2.nb.html
    Ignored:    analysis/13-VertPGLS-MANOVA40.nb.html
    Ignored:    analysis/13-VertPGLS-MANOVA90.nb.html
    Ignored:    analysis/14-VertPGLS-MANOVA40.nb.html
    Ignored:    analysis/20-plot_phylogeny.nb.html
    Ignored:    analysis/21-plot_fits_and_summary.nb.html
    Ignored:    analysis/CheckSpeciesMatch.nb.html
    Ignored:    caper_test.nb.html
    Ignored:    data/.DS_Store
    Ignored:    ggtree_attempt.nb.html
    Ignored:    output/.DS_Store
    Ignored:    plot_example_data.nb.html
    Ignored:    plot_fits_and_summary.nb.html
    Ignored:    plot_phylogeny.nb.html
    Ignored:    summarize_vert_meas.nb.html
    Ignored:    test_phylogeny.nb.html
    Ignored:    test_vertebraspace.nb.html
    Ignored:    vert_evol.Rproj

Untracked files:
    Untracked:  Archive.zip
    Untracked:  Main.html
    Untracked:  ProcessFCSVfiles.Rmd
    Untracked:  VertPGLS.html
    Untracked:  analysis/13-VertPGLS-MANOVA90.Rmd
    Untracked:  analysis/14-VertPGLS-MANOVA40.Rmd
    Untracked:  data/actinopt_12k_raxml.tre.xz
    Untracked:  gg_saver.R
    Untracked:  output/BodyDistribution.pdf
    Untracked:  output/MasterVert_Measurements.csv
    Untracked:  output/anova_table.rtf
    Untracked:  output/anovatabs.csv
    Untracked:  output/effectsizes.csv
    Untracked:  output/fineness.pdf
    Untracked:  output/habitatvals.csv
    Untracked:  output/manova_table.rtf
    Untracked:  output/mean_d_alphaPos_CBL.pdf
    Untracked:  output/mean_params.pdf
    Untracked:  output/pair_plot.pdf
    Untracked:  output/phylogeny_families.pdf
    Untracked:  output/plot_example_data_figure.pdf
    Untracked:  output/predvals.Rds
    Untracked:  output/stats_table.rtf
    Untracked:  output/vertdata_show_species.csv
    Untracked:  output/vertdata_summary_species.csv
    Untracked:  output/vertshape.pdf
    Untracked:  plot_fits_and_summary.Rmd
    Untracked:  summarize_vert_meas.html
    Untracked:  testtree.csv
    Untracked:  vert_tree.csv

Unstaged changes:
    Deleted:    .Rprofile
    Modified:   analysis/index.Rmd
    Modified:   data/MasterVert_Measurements.csv
    Modified:   output/MasterVert_Measurements_Matched.csv
    Modified:   output/vert_tree.rds
    Modified:   output/vertdata_centered.csv
    Modified:   output/vertdata_summary.csv
    Deleted:    renv.lock
    Deleted:    renv/.gitignore
    Deleted:    renv/activate.R
    Deleted:    renv/settings.dcf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/20-plot_phylogeny.Rmd) and HTML (docs/20-plot_phylogeny.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bbb4c58 Eric Tytell 2022-10-23 Final analysis scripts
Rmd 65e217e Eric Tytell 2022-09-16 Updated code
Rmd 8b12300 Eric Tytell 2022-09-06 Assorted updates
html 5e4be8c Eric Tytell 2022-04-11 Build site.
Rmd 23908bd Eric Tytell 2021-12-30 Test site build again
Rmd edeae3c Eric Tytell 2021-12-30 Rename notebooks to indicate order

library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.3.6     ✔ purrr   0.3.4
✔ tibble  3.1.8     ✔ dplyr   1.0.9
✔ tidyr   1.2.0     ✔ stringr 1.4.1
✔ readr   2.1.2     ✔ forcats 0.5.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(ggbeeswarm)
library(phytools)
Loading required package: ape
Loading required package: maps

Attaching package: 'maps'

The following object is masked from 'package:purrr':

    map
library(patchwork)
library(here)
here() starts at /Users/etytel01/Documents/Vertebrae/Code
library(ggtree)
Warning: package 'ggtree' was built under R version 4.2.1
ggtree v3.4.2 For help: https://yulab-smu.top/treedata-book/

If you use the ggtree package suite in published research, please cite
the appropriate paper(s):

Guangchuang Yu, David Smith, Huachen Zhu, Yi Guan, Tommy Tsan-Yuk Lam.
ggtree: an R package for visualization and annotation of phylogenetic
trees with their covariates and other associated data. Methods in
Ecology and Evolution. 2017, 8(1):28-36. doi:10.1111/2041-210X.12628

G Yu. Data Integration, Manipulation and Visualization of Phylogenetic
Trees (1st ed.). Chapman and Hall/CRC. 2022. ISBN: 9781032233574

LG Wang, TTY Lam, S Xu, Z Dai, L Zhou, T Feng, P Guo, CW Dunn, BR
Jones, T Bradley, H Zhu, Y Guan, Y Jiang, G Yu. treeio: an R package
for phylogenetic tree input and output with richly annotated and
associated data. Molecular Biology and Evolution. 2020, 37(2):599-603.
doi: 10.1093/molbev/msz240

Attaching package: 'ggtree'

The following object is masked from 'package:ape':

    rotate

The following object is masked from 'package:tidyr':

    expand
library(plotly)

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

    last_plot

The following object is masked from 'package:stats':

    filter

The following object is masked from 'package:graphics':

    layout

Figure 1

For this figure, we need to identify three species from the three habitat classes that have clearly different vertebrae.

vertdata <- read_csv(here('output/vertdata_summary_species.csv'))
Rows: 82 Columns: 46
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (7): Species, Habitat, Water_Type, MatchSpecies, alltaxon, Order, Family
dbl (39): Indiv, fineness, CBL_med, CBL_max, CBL_mn, d_med, d_max, d_mn, alp...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
plot_ly(data = vertdata, type = "scatter", mode = "markers") %>%
  add_trace(x = ~Habitat, y = ~d_med, type = "box",
            text = ~Species, hoverinfo = "text",
            boxpoints = "all", jitter = 0.2)
Warning: Can't display both discrete & non-discrete data on same axis
Warning: 'box' objects don't have these attributes: 'mode'
Valid attributes include:
'alignmentgroup', 'boxmean', 'boxpoints', 'customdata', 'customdatasrc', 'dx', 'dy', 'fillcolor', 'hoverinfo', 'hoverinfosrc', 'hoverlabel', 'hoveron', 'hovertemplate', 'hovertemplatesrc', 'hovertext', 'hovertextsrc', 'ids', 'idssrc', 'jitter', 'legendgroup', 'legendgrouptitle', 'legendrank', 'line', 'lowerfence', 'lowerfencesrc', 'marker', 'mean', 'meansrc', 'median', 'mediansrc', 'meta', 'metasrc', 'name', 'notched', 'notchspan', 'notchspansrc', 'notchwidth', 'offsetgroup', 'opacity', 'orientation', 'pointpos', 'q1', 'q1src', 'q3', 'q3src', 'quartilemethod', 'sd', 'sdsrc', 'selected', 'selectedpoints', 'showlegend', 'stream', 'text', 'textsrc', 'transforms', 'type', 'uid', 'uirevision', 'unselected', 'upperfence', 'upperfencesrc', 'visible', 'whiskerwidth', 'width', 'x', 'x0', 'xaxis', 'xcalendar', 'xhoverformat', 'xperiod', 'xperiod0', 'xperiodalignment', 'xsrc', 'y', 'y0', 'yaxis', 'ycalendar', 'yhoverformat', 'yperiod', 'yperiod0', 'yperiodalignment', 'ysrc', 'key', 'set', 'frame', 'transforms', '_isNestedKey', '_isSimpleKey', '_isGraticule', '_bbox'

A tibble: 12 × 47

Species Indiv Habitat Water…¹ Match…² allta…³ Order Family finen…⁴ CBL_med 1 Coryphaen… 1 benthic marine Coryph… Actino… Gadi… Macro… 7.76 0.0250 2 Ophiodon_… 1 benthic marine Hexagr… Actino… Perc… Hexag… 8.86 0.0139 3 Pholis_or… 1 benthic marine Pholis… Actino… Perc… Pholi… 19.7 0.0126 4 Remora_re… 1 benthic marine Remora… Actino… Cara… Echen… 6.84 0.0286 5 Salarias_… 1 benthic marine Salari… Actino… Blen… Blenn… 5.77 0.0241 6 Lepomis_m… 1 demers… freshw… Lepomi… Actino… Cent… Centr… 6.11 0.0263 7 Myriprist… 1 demers… marine Myripr… Actino… Holo… Holoc… 4.31 0.0294 8 Ophidion_… 1 demers… marine Ophidi… Actino… Ophi… Ophid… 11.6 0.0137 9 Serrasalm… 1 demers… freshw… Serras… Actino… Char… Serra… 6.41 0.0194 10 Abramis_b… 1 pelagic freshw… Alburn… Actino… Cypr… Cypri… 8.95 0.0166 11 Aulorhync… 1 pelagic marine Aulorh… Actino… Perc… Aulor… 13.1 0.0170 12 Sphyraena… 1 pelagic marine Sphyra… Actino… Ince… Sphyr… 11.5 0.0321 # … with 37 more variables: CBL_max , CBL_mn , d_med , # d_max , d_mn , alphaAnt_med , alphaAnt_max , # alphaAnt_mn , alphaPos_med , alphaPos_max , # alphaPos_mn , DAnt_med , DAnt_max , DAnt_mn , # DPos_med , DPos_max , DPos_mn , dBW_med , # dBW_max , dBW_mn , DAntBW_med , DAntBW_max , # DAntBW_mn , DPosBW_med , DPosBW_max , DPosBW_mn , …

Choose example species close to the median for their group:

  • benthic: Barbichthys laevis (Sucker barb) or Myoxocephalus polyacanthocephalus (Sculpin)
  • demersal: Poecilia reticulata (Guppy)
  • pelagic: Sphyraena sphyraena (Barracuda)

We’ll use the sculpin as an example benthic species, because we have good histology data for it.

examplespecies <- list("Myoxocephalus_polyacanthocephalus",
                    "Anoplarchus_purpurescens",
                    "Cymatogaster_aggregata")
verttree <- readRDS(here('output/vert_tree.rds'))
vertdata %>%
  filter(Species %in% examplespecies)
# A tibble: 3 × 46
  Species     Indiv Habitat Water…¹ Match…² allta…³ Order Family finen…⁴ CBL_med
  <chr>       <dbl> <chr>   <chr>   <chr>   <chr>   <chr> <chr>    <dbl>   <dbl>
1 Anoplarchu…     1 demers… marine  Anopla… Actino… Perc… Stich…    9.51  0.0156
2 Cymatogast…     1 pelagic freshw… Cymato… Actino… Ince… Embio…    7.15  0.0202
3 Myoxocepha…     1 benthic marine  Myoxoc… Actino… Perc… Psych…    2.72  0.0191
# … with 36 more variables: CBL_max <dbl>, CBL_mn <dbl>, d_med <dbl>,
#   d_max <dbl>, d_mn <dbl>, alphaAnt_med <dbl>, alphaAnt_max <dbl>,
#   alphaAnt_mn <dbl>, alphaPos_med <dbl>, alphaPos_max <dbl>,
#   alphaPos_mn <dbl>, DAnt_med <dbl>, DAnt_max <dbl>, DAnt_mn <dbl>,
#   DPos_med <dbl>, DPos_max <dbl>, DPos_mn <dbl>, dBW_med <dbl>,
#   dBW_max <dbl>, dBW_mn <dbl>, DAntBW_med <dbl>, DAntBW_max <dbl>,
#   DAntBW_mn <dbl>, DPosBW_med <dbl>, DPosBW_max <dbl>, DPosBW_mn <dbl>, …
vertdata <-
  vertdata %>%
  mutate(WaterTypeShort = str_sub(Water_Type, start = 1, end = 1))
vertdata |> 
  distinct(Species) |> 
  dplyr::summarise(n = n())
# A tibble: 1 × 1
      n
  <int>
1    82
vertdata |> 
  group_by(Habitat) |> 
  dplyr::summarize(n = n()) |> 
  mutate(pct = n / sum(n) * 100)
# A tibble: 3 × 3
  Habitat      n   pct
  <chr>    <int> <dbl>
1 benthic     18  22.0
2 demersal    40  48.8
3 pelagic     24  29.3
vertdata |> 
  distinct(Family) |> 
  dplyr::summarise(n = n())
# A tibble: 1 × 1
      n
  <int>
1    67
vertdata |> 
  group_by(Habitat) |> 
  distinct(Family) |> 
  dplyr::summarize(n = n())
# A tibble: 3 × 2
  Habitat      n
  <chr>    <int>
1 benthic     14
2 demersal    37
3 pelagic     21
vertdata |> 
  group_by(Water_Type) |> 
  dplyr::summarize(n = n()) |> 
  mutate(pct = n / sum(n) * 100)
# A tibble: 3 × 3
  Water_Type     n   pct
  <chr>      <int> <dbl>
1 anadromous     1  1.22
2 freshwater    27 32.9 
3 marine        54 65.9 
orders <-
  left_join(as_tibble(verttree), vertdata, by = c("label" = "Species")) |> 
  mutate(Species = label,
         label = str_replace(label, '_', ' ')) |> 
  group_by(Order) |> 
  dplyr::summarize(id = min(parent),
                   n = n()) |> 
  filter(n >= 2 & !str_detect(Order, 'Incertae') & !is.na(Order))
orders
# A tibble: 11 × 3
   Order                 id     n
   <chr>              <int> <int>
 1 Beloniformes         105     2
 2 Carangiformes        112     4
 3 Centrarchiformes     139     2
 4 Characiformes        160     3
 5 Clupeiformes         162     3
 6 Cypriniformes        152     5
 7 Cyprinodontiformes   103     3
 8 Gadiformes           146     2
 9 Perciformes          126    15
10 Scombriformes        116     3
11 Siluriformes         158     3
nodestolabel <- c('Actinopterygii',
                  'Neopterygii',
                  'Teleostei',
                  'Otomorpha',
                  # 'Euteleostomorpha',
                  'Neoteleostei',
                  'Acanthomorphata',
                  'Percomorphaceae',
                  'Eupercaria')

allnodes <-
  left_join(as_tibble(verttree), vertdata, by = c("label" = "Species")) |> 
  mutate(Species = label,
         label = str_replace(label, '_', ' '),
         alltaxon = replace_na(alltaxon, '-')) |> 
  select(parent, node, alltaxon)

labelnodes <- tibble()
for (n in nodestolabel) {
  print(n[[1]])
  labelnodes <-
    allnodes |>
    dplyr::filter(str_detect(alltaxon, n[[1]])) |> 
    dplyr::summarize(taxon = n[[1]],
                     # alltaxon = alltaxon[1],
                     pmin = min(parent),
                     nmin = min(node)) |> 
    bind_rows(labelnodes)
}
[1] "Actinopterygii"
[1] "Neopterygii"
[1] "Teleostei"
[1] "Otomorpha"
[1] "Neoteleostei"
[1] "Acanthomorphata"
[1] "Percomorphaceae"
[1] "Eupercaria"
labelnodes
# A tibble: 8 × 3
  taxon            pmin  nmin
  <chr>           <int> <int>
1 Eupercaria        118    24
2 Percomorphaceae    93     1
3 Acanthomorphata    93     1
4 Neoteleostei       90     1
5 Otomorpha         150    64
6 Teleostei          85     1
7 Neopterygii        84     1
8 Actinopterygii     83     1
left_join(as_tibble(verttree), vertdata, by = c("label" = "Species")) %>%
  # left_join(labelnodes, by = c('parent' = 'pmin')) %>%
  mutate(Species = label,
         label = str_replace(label, '_', ' ')) %>%
         # str_c(Family, Species)) %>%
  tidytree::as.treedata() %>%
  ggtree() + #branch.length = 'none') + # layout = "circular", open.angle = 120) + 
  scale_y_reverse() +
  geom_tiplab(aes(color = Habitat), size=1.5, offset = 0.2) +
  geom_tippoint(aes(shape = Water_Type)) +
  geom_text2(aes(label=label, subset=Species %in% examplespecies),
             hjust = 0, vjust = 0) +
  geom_cladelab(data=orders,
                mapping=aes(node=id, label=Order), geom='text',
                offset=50) +
  # geom_text2(aes(label=taxon, subset=!is.na(taxon))) +
  geom_treescale() +
  scale_shape_manual(values = c(3, 23, 24)) +
  scale_color_manual(values = c(benthic="chocolate4", demersal = "gold", pelagic = "deepskyblue2")) +
  theme(legend.position = "bottom")
Scale for 'y' is already present. Adding another scale for 'y', which will
replace the existing scale.
Warning: The "Order" has(have) been found in tree data. You might need to rename the
variable(s) in the data of "geom_cladelab" to avoid this warning!

  #geom_label2(aes(label='P', subset = ispair))
ltt.coplot(verttree, show.tip.label = FALSE)

# ggsave(here('output/phylogeny_families.pdf'), width=6.5, height=8, units="in")

ggsave(here('output/plot_example_data_figure.pdf'), width=3.5, height=6, units="in")
vertdata %>%
  group_by(Habitat) %>%
  summarize(n = n(), frac = n() / nrow(vertdata))
# A tibble: 3 × 3
  Habitat      n  frac
  <chr>    <int> <dbl>
1 benthic     18 0.220
2 demersal    40 0.488
3 pelagic     24 0.293
vertdata %>%
  group_by(Water_Type) %>%
  summarize(n = n(), frac = n() / nrow(vertdata))
# A tibble: 3 × 3
  Water_Type     n   frac
  <chr>      <int>  <dbl>
1 anadromous     1 0.0122
2 freshwater    27 0.329 
3 marine        54 0.659 

sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur/Monterey 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] plotly_4.10.0    ggtree_3.4.2     here_1.0.1       patchwork_1.1.2 
 [5] phytools_1.2-0   maps_3.4.0       ape_5.6-2        ggbeeswarm_0.6.0
 [9] forcats_0.5.2    stringr_1.4.1    dplyr_1.0.9      purrr_0.3.4     
[13] readr_2.1.2      tidyr_1.2.0      tibble_3.1.8     ggplot2_3.3.6   
[17] tidyverse_1.3.2 

loaded via a namespace (and not attached):
  [1] googledrive_2.0.0       colorspace_2.0-3        ellipsis_0.3.2         
  [4] rprojroot_2.0.3         fs_1.5.2                aplot_0.1.6            
  [7] rstudioapi_0.14         farver_2.1.1            bit64_4.0.5            
 [10] optimParallel_1.0-2     fansi_1.0.3             lubridate_1.8.0        
 [13] xml2_1.3.3              codetools_0.2-18        mnormt_2.1.0           
 [16] cachem_1.0.6            knitr_1.40              jsonlite_1.8.0         
 [19] workflowr_1.7.0         broom_1.0.1             dbplyr_2.2.1           
 [22] compiler_4.2.0          httr_1.4.4              backports_1.4.1        
 [25] assertthat_0.2.1        Matrix_1.4-1            fastmap_1.1.0          
 [28] lazyeval_0.2.2          gargle_1.2.0            cli_3.3.0              
 [31] later_1.3.0             htmltools_0.5.3         tools_4.2.0            
 [34] igraph_1.3.4            coda_0.19-4             gtable_0.3.1           
 [37] glue_1.6.2              clusterGeneration_1.3.7 fastmatch_1.1-3        
 [40] Rcpp_1.0.9              cellranger_1.1.0        jquerylib_0.1.4        
 [43] vctrs_0.4.1             nlme_3.1-159            crosstalk_1.2.0        
 [46] xfun_0.32               rvest_1.0.3             lifecycle_1.0.1        
 [49] phangorn_2.9.0          googlesheets4_1.0.1     MASS_7.3-56            
 [52] scales_1.2.1            vroom_1.5.7             ragg_1.2.2             
 [55] hms_1.1.2               promises_1.2.0.1        parallel_4.2.0         
 [58] expm_0.999-6            yaml_2.3.5              ggfun_0.0.7            
 [61] yulab.utils_0.0.5       sass_0.4.2              stringi_1.7.8          
 [64] highr_0.9               plotrix_3.8-2           tidytree_0.4.0         
 [67] systemfonts_1.0.4       rlang_1.0.4             pkgconfig_2.0.3        
 [70] evaluate_0.16           lattice_0.20-45         labeling_0.4.2         
 [73] htmlwidgets_1.5.4       treeio_1.20.2           bit_4.0.4              
 [76] tidyselect_1.1.2        magrittr_2.0.3          R6_2.5.1               
 [79] generics_0.1.3          combinat_0.0-8          DBI_1.1.3              
 [82] pillar_1.8.1            haven_2.5.1             whisker_0.4            
 [85] withr_2.5.0             scatterplot3d_0.3-41    modelr_0.1.9           
 [88] crayon_1.5.1            utf8_1.2.2              tzdb_0.3.0             
 [91] rmarkdown_2.16          grid_4.2.0              readxl_1.4.1           
 [94] data.table_1.14.2       git2r_0.30.1            reprex_2.0.2           
 [97] digest_0.6.29           httpuv_1.6.5            numDeriv_2016.8-1.1    
[100] textshaping_0.3.6       gridGraphics_0.5-1      munsell_0.5.0          
[103] viridisLite_0.4.1       beeswarm_0.4.0          ggplotify_0.1.0        
[106] vipor_0.4.5             bslib_0.4.0             quadprog_1.5-8