Last updated: 2022-10-23

Checks: 7 0

Knit directory: Code/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211230) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bbb4c58. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    Flexibility Comparisons.nb.html
    Ignored:    Main.nb.html
    Ignored:    PGLS.FullData.nb.html
    Ignored:    PGLSforeachMeasFeature.nb.html
    Ignored:    PGLSwithPCA_Dims.nb.html
    Ignored:    PreppedVertMeas.nb.html
    Ignored:    ProcessCymatogasterFiles.nb.html
    Ignored:    ProcessFCSVfiles.nb.html
    Ignored:    TestingHabitatwithFriedmanData.nb.html
    Ignored:    Trilok_tree.nb.html
    Ignored:    VertLM.nb.html
    Ignored:    VertMeasLDA_Attempt.nb.html
    Ignored:    VertPGLS.nb.html
    Ignored:    VertPairs.nb.html
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/02-CheckSpeciesMatch.nb.html
    Ignored:    analysis/10-VertLM.nb.html
    Ignored:    analysis/12-VertPGLS2.nb.html
    Ignored:    analysis/13-VertPGLS-MANOVA40.nb.html
    Ignored:    analysis/13-VertPGLS-MANOVA90.nb.html
    Ignored:    analysis/14-VertPGLS-MANOVA40.nb.html
    Ignored:    analysis/20-plot_phylogeny.nb.html
    Ignored:    analysis/21-plot_fits_and_summary.nb.html
    Ignored:    analysis/CheckSpeciesMatch.nb.html
    Ignored:    caper_test.nb.html
    Ignored:    data/.DS_Store
    Ignored:    ggtree_attempt.nb.html
    Ignored:    output/.DS_Store
    Ignored:    plot_example_data.nb.html
    Ignored:    plot_fits_and_summary.nb.html
    Ignored:    plot_phylogeny.nb.html
    Ignored:    summarize_vert_meas.nb.html
    Ignored:    test_phylogeny.nb.html
    Ignored:    test_vertebraspace.nb.html
    Ignored:    vert_evol.Rproj

Untracked files:
    Untracked:  Archive.zip
    Untracked:  Main.html
    Untracked:  ProcessFCSVfiles.Rmd
    Untracked:  VertPGLS.html
    Untracked:  analysis/13-VertPGLS-MANOVA90.Rmd
    Untracked:  analysis/14-VertPGLS-MANOVA40.Rmd
    Untracked:  data/actinopt_12k_raxml.tre.xz
    Untracked:  gg_saver.R
    Untracked:  output/BodyDistribution.pdf
    Untracked:  output/MasterVert_Measurements.csv
    Untracked:  output/anova_table.rtf
    Untracked:  output/anovatabs.csv
    Untracked:  output/effectsizes.csv
    Untracked:  output/fineness.pdf
    Untracked:  output/habitatvals.csv
    Untracked:  output/manova_table.rtf
    Untracked:  output/mean_d_alphaPos_CBL.pdf
    Untracked:  output/mean_params.pdf
    Untracked:  output/pair_plot.pdf
    Untracked:  output/phylogeny_families.pdf
    Untracked:  output/plot_example_data_figure.pdf
    Untracked:  output/predvals.Rds
    Untracked:  output/stats_table.rtf
    Untracked:  output/vertdata_show_species.csv
    Untracked:  output/vertdata_summary_species.csv
    Untracked:  output/vertshape.pdf
    Untracked:  plot_fits_and_summary.Rmd
    Untracked:  summarize_vert_meas.html
    Untracked:  testtree.csv
    Untracked:  vert_tree.csv

Unstaged changes:
    Deleted:    .Rprofile
    Modified:   analysis/index.Rmd
    Modified:   data/MasterVert_Measurements.csv
    Modified:   output/MasterVert_Measurements_Matched.csv
    Modified:   output/vert_tree.rds
    Modified:   output/vertdata_centered.csv
    Modified:   output/vertdata_summary.csv
    Deleted:    renv.lock
    Deleted:    renv/.gitignore
    Deleted:    renv/activate.R
    Deleted:    renv/settings.dcf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/11-MergePhylogeny.Rmd) and HTML (docs/11-MergePhylogeny.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bbb4c58 Eric Tytell 2022-10-23 Final analysis scripts
Rmd 65e217e Eric Tytell 2022-09-16 Updated code
Rmd 23b4a3f Eric Tytell 2022-09-06 Starting to compare a different phylogeny

library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.3.6     ✔ purrr   0.3.4
✔ tibble  3.1.8     ✔ dplyr   1.0.9
✔ tidyr   1.2.0     ✔ stringr 1.4.1
✔ readr   2.1.2     ✔ forcats 0.5.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(ggbeeswarm)
library(phytools)
Loading required package: ape
Loading required package: maps

Attaching package: 'maps'

The following object is masked from 'package:purrr':

    map
library(patchwork)
library(here)
here() starts at /Users/etytel01/Documents/Vertebrae/Code
library(nlme)

Attaching package: 'nlme'

The following object is masked from 'package:dplyr':

    collapse
library(ape)
library(geiger)
library(ggtree)
Warning: package 'ggtree' was built under R version 4.2.1
ggtree v3.4.2 For help: https://yulab-smu.top/treedata-book/

If you use the ggtree package suite in published research, please cite
the appropriate paper(s):

Guangchuang Yu, David Smith, Huachen Zhu, Yi Guan, Tommy Tsan-Yuk Lam.
ggtree: an R package for visualization and annotation of phylogenetic
trees with their covariates and other associated data. Methods in
Ecology and Evolution. 2017, 8(1):28-36. doi:10.1111/2041-210X.12628

G Yu. Data Integration, Manipulation and Visualization of Phylogenetic
Trees (1st ed.). Chapman and Hall/CRC. 2022. ISBN: 9781032233574

LG Wang, TTY Lam, S Xu, Z Dai, L Zhou, T Feng, P Guo, CW Dunn, BR
Jones, T Bradley, H Zhu, Y Guan, Y Jiang, G Yu. treeio: an R package
for phylogenetic tree input and output with richly annotated and
associated data. Molecular Biology and Evolution. 2020, 37(2):599-603.
doi: 10.1093/molbev/msz240

Attaching package: 'ggtree'

The following object is masked from 'package:nlme':

    collapse

The following object is masked from 'package:ape':

    rotate

The following object is masked from 'package:tidyr':

    expand
library(emmeans)
library(car)
Loading required package: carData

Attaching package: 'car'

The following object is masked from 'package:dplyr':

    recode

The following object is masked from 'package:purrr':

    some
library(Hmisc)
Loading required package: lattice
Loading required package: survival
Loading required package: Formula

Attaching package: 'Hmisc'

The following object is masked from 'package:ape':

    zoom

The following objects are masked from 'package:dplyr':

    src, summarize

The following objects are masked from 'package:base':

    format.pval, units
citation()

To cite R in publications use:

  R Core Team (2022). R: A language and environment for statistical
  computing. R Foundation for Statistical Computing, Vienna, Austria.
  URL https://www.R-project.org/.

A BibTeX entry for LaTeX users is

  @Manual{,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2022},
    url = {https://www.R-project.org/},
  }

We have invested a lot of time and effort in creating R, please cite it
when using it for data analysis. See also 'citation("pkgname")' for
citing R packages.
print(getRversion())
[1] '4.2.0'
citation("nlme")

To cite package 'nlme' in publications use:

  Pinheiro J, Bates D, R Core Team (2022). _nlme: Linear and Nonlinear
  Mixed Effects Models_. R package version 3.1-159,
  <https://CRAN.R-project.org/package=nlme>.

  Pinheiro JC, Bates DM (2000). _Mixed-Effects Models in S and S-PLUS_.
  Springer, New York. doi:10.1007/b98882
  <https://doi.org/10.1007/b98882>.

To see these entries in BibTeX format, use 'print(<citation>,
bibtex=TRUE)', 'toBibtex(.)', or set
'options(citation.bibtex.max=999)'.
packageVersion("nlme")
[1] '3.1.159'
citation("ape")

To cite ape in a publication please use:

  Paradis E. & Schliep K. 2019. ape 5.0: an environment for modern
  phylogenetics and evolutionary analyses in R. Bioinformatics 35:
  526-528.

A BibTeX entry for LaTeX users is

  @Article{,
    title = {ape 5.0: an environment for modern phylogenetics and evolutionary analyses in {R}},
    author = {E. Paradis and K. Schliep},
    journal = {Bioinformatics},
    year = {2019},
    volume = {35},
    pages = {526-528},
  }

As ape is evolving quickly, you may want to cite also its version
number (found with 'library(help = ape)' or 'packageVersion("ape")').
packageVersion("ape")
[1] '5.6.2'
citation("geiger")

To cite medusa, auteur, or geiger in a publication use:

medusa

  Alfaro Michael E, Francesco Santini, Chad Brock, Hugo Alamillo, Alex
  Dornburg, Daniel L Rabosky, Giorgio Carnevale, and Luke J Harmon.
  2009. Nine exceptional radiations plus high turnover explain species
  diversity in jawed vertebrates. PNAS 106:13410-13414.

auteur

  Eastman Jonathan M, Michael E Alfaro, Paul Joyce, Andrew L Hipp, and
  Luke J Harmon. 2011. A novel comparative method for identifying
  shifts in the rate of character evolution on trees. Evolution
  65:3578-3589.

MECCA

  Slater Graham J, Luke J Harmon, Daniel Wegmann, Paul Joyce, Liam J
  Revell, and Michael E Alfaro. 2012. Fitting models of continuous
  trait evolution to incompletely sampled comparative data using
  approximate Bayesian computation. Evolution 66:752-762.

geiger-orig

  Harmon Luke J, Jason T Weir, Chad D Brock, Richard E Glor, and
  Wendell Challenger. 2008. GEIGER: investigating evolutionary
  radiations. Bioinformatics 24:129-131.

geiger

  Pennell Matthew W, Jonathan M Eastman, Graham J Slater, Joseph W
  Brown, Josef C Uyeda, Richard G FitzJohn, Michael E Alfaro, and Luke
  J Harmon. 2014. geiger v2.0: an expanded suite of methods for fitting
  macroevolutionary models to phylogenetic trees. Bioinformatics
  30:2216-2218.

To see these entries in BibTeX format, use 'print(<citation>,
bibtex=TRUE)', 'toBibtex(.)', or set
'options(citation.bibtex.max=999)'.
packageVersion("geiger")
[1] '2.0.10'

Load data

vertdata_sum <- read_csv(here("output/vertdata_summary.csv")) |> 
  mutate(MatchSpecies = str_c(MatchGenus, MatchSpecies, sep = '_')) |> 
  select(-MatchGenus)
Rows: 82 Columns: 46
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (8): Species, Habitat, Water_Type, MatchSpecies, MatchGenus, alltaxon, ...
dbl (38): Indiv, fineness, CBL_med, CBL_max, CBL_mn, d_med, d_max, d_mn, alp...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Phylogeny

This is the tree from the Fish Tree of Life: https://fishtreeoflife.org/

tree <- read.tree(here('data/actinopt_12k_treePL.tre.xz'))

Get the names of species from the tree.

allspecies <- tibble(tree$tip.label)
colnames(allspecies) <- c('Species')
head(allspecies)
# A tibble: 6 × 1
  Species          
  <chr>            
1 Gambusia_marshi  
2 Gambusia_panuco  
3 Gambusia_regani  
4 Gambusia_aurata  
5 Gambusia_hurtadoi
6 Gambusia_gaigei  

Set up the tip number (just the row)

allspecies$Tip <- seq_len(nrow(allspecies))

The double species name for Fundulus confuses things, so we’ll just correct it manually.

vertdata_sum <-
  vertdata_sum |> 
  mutate(MatchSpecies = if_else(Species == 'Fundulus_heteroclitus',
                                'Fundulus_heteroclitus_heteroclitus',
                                MatchSpecies))
vertdata <- left_join(vertdata_sum, allspecies, 
                                  by=c("MatchSpecies"="Species")) %>%
  select(-(ends_with(".x") | ends_with(".y")))
vertdata
# A tibble: 82 × 46
   Species    Indiv Habitat Water…¹ Match…² allta…³ Order Family finen…⁴ CBL_med
   <chr>      <dbl> <chr>   <chr>   <chr>   <chr>   <chr> <chr>    <dbl>   <dbl>
 1 Abramis_b…     1 pelagic freshw… Alburn… Actino… Cypr… Cypri…    8.95 0.0166 
 2 Alectis_c…     1 pelagic marine  Alecti… Actino… Cara… Caran…    8.75 0.0346 
 3 Alosa_pse…     1 pelagic anadro… Alosa_… Actino… Clup… Clupe…    7.39 0.0165 
 4 Amia_calva     1 demers… freshw… Amia_c… Actino… Amii… Amiid…    6.72 0.00983
 5 Ammodytes…     1 demers… marine  Ammody… Actino… Uran… Ammod…   16.9  0.0132 
 6 Anodontos…     1 pelagic freshw… Doroso… Actino… Clup… Clupe…    4.66 0.0228 
 7 Anoplarch…     1 benthic marine  Anopla… Actino… Perc… Stich…    8.62 0.0195 
 8 Anoplarch…     1 demers… marine  Anopla… Actino… Perc… Stich…    9.51 0.0156 
 9 Anoplogas…     1 pelagic marine  Anoplo… Actino… Bery… Anopl…    5.04 0.0287 
10 Aphareus_…     1 pelagic marine  Aphare… Actino… Ince… Lutja…    5.01 0.0312 
# … with 72 more rows, 36 more variables: CBL_max <dbl>, CBL_mn <dbl>,
#   d_med <dbl>, d_max <dbl>, d_mn <dbl>, alphaAnt_med <dbl>,
#   alphaAnt_max <dbl>, alphaAnt_mn <dbl>, alphaPos_med <dbl>,
#   alphaPos_max <dbl>, alphaPos_mn <dbl>, DAnt_med <dbl>, DAnt_max <dbl>,
#   DAnt_mn <dbl>, DPos_med <dbl>, DPos_max <dbl>, DPos_mn <dbl>,
#   dBW_med <dbl>, dBW_max <dbl>, dBW_mn <dbl>, DAntBW_med <dbl>,
#   DAntBW_max <dbl>, DAntBW_mn <dbl>, DPosBW_med <dbl>, DPosBW_max <dbl>, …

Drop species without a match

vertdata %>%
  filter(is.na(Tip)) %>%
  distinct(Species, .keep_all=TRUE) %>%
  select(Species, MatchSpecies, Tip, Habitat)
# A tibble: 0 × 4
# … with 4 variables: Species <chr>, MatchSpecies <chr>, Tip <int>,
#   Habitat <chr>
vertdata <-
  vertdata %>%
  filter(!is.na(Tip))
ourspecies <-
  vertdata %>%
  distinct(Species, .keep_all=TRUE)
verttree <- keep.tip(tree, tip=as.vector(ourspecies$Tip))

Replace the names of species in the tree with our matched ones.

verttree$tip.label <-
  ourspecies |> 
  arrange(Tip) |> 
  pull(Species)
plotTree(verttree)

vertdata_sp <- 
  vertdata %>%
  distinct(Species, .keep_all = TRUE) %>%
  mutate(rowname = Species) %>%
  column_to_rownames(var = "rowname")
left_join(as_tibble(verttree),
          vertdata_sp %>%
            rownames_to_column("label") %>%
            select(label, Habitat)) %>%
  tidytree::as.treedata() %>%
  ggtree(layout = 'circular') + # geom_tiplab() +
  geom_tippoint(aes(color = Habitat))
Joining, by = "label"

Check if tree and data match

length(verttree$tip.label)
[1] 82
nrow(vertdata_sp)
[1] 82
name.check(verttree, vertdata_sp)
[1] "OK"

Merge the measurements and the tree

verttree_data <-
  as_tibble(verttree) %>%
  left_join(vertdata_sp %>%
              rownames_to_column("label") %>%
              select(label, Habitat, alltaxon, Order, Family, fineness,
                     ends_with("80"), ends_with("max"), ends_with("med"), ends_with("slope"), ends_with("quad")))
Joining, by = "label"

Save out the tree data. There is something subtly different about saving the data out as a csv file and saving it as an RDS file. The base class of the tree is tbl_tree, but when we load it back in from a csv, despite having exactly the same data, it won’t work with the tidytree functions. So we save it in an RDS file, which preserves the class.

write_csv(vertdata_sp, here('output/vertdata_summary_species.csv'))
saveRDS(verttree, here('output/vert_tree.rds'))

sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur/Monterey 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] Hmisc_4.7-1      Formula_1.2-4    survival_3.3-1   lattice_0.20-45 
 [5] car_3.1-0        carData_3.0-5    emmeans_1.8.0    ggtree_3.4.2    
 [9] geiger_2.0.10    nlme_3.1-159     here_1.0.1       patchwork_1.1.2 
[13] phytools_1.2-0   maps_3.4.0       ape_5.6-2        ggbeeswarm_0.6.0
[17] forcats_0.5.2    stringr_1.4.1    dplyr_1.0.9      purrr_0.3.4     
[21] readr_2.1.2      tidyr_1.2.0      tibble_3.1.8     ggplot2_3.3.6   
[25] tidyverse_1.3.2 

loaded via a namespace (and not attached):
  [1] readxl_1.4.1            backports_1.4.1         fastmatch_1.1-3        
  [4] workflowr_1.7.0         igraph_1.3.4            lazyeval_0.2.2         
  [7] splines_4.2.0           digest_0.6.29           yulab.utils_0.0.5      
 [10] htmltools_0.5.3         fansi_1.0.3             checkmate_2.1.0        
 [13] magrittr_2.0.3          optimParallel_1.0-2     googlesheets4_1.0.1    
 [16] cluster_2.1.3           tzdb_0.3.0              modelr_0.1.9           
 [19] vroom_1.5.7             jpeg_0.1-9              colorspace_2.0-3       
 [22] rvest_1.0.3             haven_2.5.1             xfun_0.32              
 [25] crayon_1.5.1            jsonlite_1.8.0          phangorn_2.9.0         
 [28] glue_1.6.2              gtable_0.3.1            gargle_1.2.0           
 [31] abind_1.4-5             scales_1.2.1            mvtnorm_1.1-3          
 [34] DBI_1.1.3               Rcpp_1.0.9              plotrix_3.8-2          
 [37] htmlTable_2.4.1         xtable_1.8-4            gridGraphics_0.5-1     
 [40] tidytree_0.4.0          bit_4.0.4               foreign_0.8-82         
 [43] subplex_1.8             deSolve_1.33            htmlwidgets_1.5.4      
 [46] httr_1.4.4              RColorBrewer_1.1-3      ellipsis_0.3.2         
 [49] farver_2.1.1            pkgconfig_2.0.3         nnet_7.3-17            
 [52] sass_0.4.2              dbplyr_2.2.1            deldir_1.0-6           
 [55] utf8_1.2.2              labeling_0.4.2          ggplotify_0.1.0        
 [58] tidyselect_1.1.2        rlang_1.0.4             later_1.3.0            
 [61] munsell_0.5.0           cellranger_1.1.0        tools_4.2.0            
 [64] cachem_1.0.6            cli_3.3.0               generics_0.1.3         
 [67] broom_1.0.1             evaluate_0.16           fastmap_1.1.0          
 [70] yaml_2.3.5              bit64_4.0.5             knitr_1.40             
 [73] fs_1.5.2                whisker_0.4             aplot_0.1.6            
 [76] xml2_1.3.3              compiler_4.2.0          rstudioapi_0.14        
 [79] beeswarm_0.4.0          png_0.1-7               reprex_2.0.2           
 [82] treeio_1.20.2           clusterGeneration_1.3.7 bslib_0.4.0            
 [85] stringi_1.7.8           highr_0.9               Matrix_1.4-1           
 [88] vctrs_0.4.1             pillar_1.8.1            lifecycle_1.0.1        
 [91] combinat_0.0-8          jquerylib_0.1.4         estimability_1.4.1     
 [94] data.table_1.14.2       httpuv_1.6.5            R6_2.5.1               
 [97] latticeExtra_0.6-30     promises_1.2.0.1        gridExtra_2.3          
[100] vipor_0.4.5             codetools_0.2-18        MASS_7.3-56            
[103] assertthat_0.2.1        rprojroot_2.0.3         withr_2.5.0            
[106] mnormt_2.1.0            expm_0.999-6            parallel_4.2.0         
[109] hms_1.1.2               rpart_4.1.16            quadprog_1.5-8         
[112] grid_4.2.0              ggfun_0.0.7             coda_0.19-4            
[115] rmarkdown_2.16          googledrive_2.0.0       git2r_0.30.1           
[118] numDeriv_2016.8-1.1     scatterplot3d_0.3-41    lubridate_1.8.0        
[121] base64enc_0.1-3         interp_1.1-3