Last updated: 2022-04-11
Checks: 7 0
Knit directory: Code/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211230)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version e47dde2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: Flexibility Comparisons.nb.html
Ignored: Main.nb.html
Ignored: PGLS.FullData.nb.html
Ignored: PGLSforeachMeasFeature.nb.html
Ignored: PGLSwithPCA_Dims.nb.html
Ignored: PreppedVertMeas.nb.html
Ignored: ProcessCymatogasterFiles.nb.html
Ignored: ProcessFCSVfiles.nb.html
Ignored: TestingHabitatwithFriedmanData.nb.html
Ignored: Trilok_tree.nb.html
Ignored: VertLM.nb.html
Ignored: VertMeasLDA_Attempt.nb.html
Ignored: VertPGLS.nb.html
Ignored: VertPairs.nb.html
Ignored: analysis/.DS_Store
Ignored: analysis/10-VertLM.nb.html
Ignored: analysis/20-plot_phylogeny.nb.html
Ignored: analysis/21-plot_fits_and_summary.nb.html
Ignored: analysis/CheckSpeciesMatch.nb.html
Ignored: caper_test.nb.html
Ignored: data/.DS_Store
Ignored: ggtree_attempt.nb.html
Ignored: plot_example_data.nb.html
Ignored: plot_fits_and_summary.nb.html
Ignored: plot_phylogeny.nb.html
Ignored: renv/library/
Ignored: renv/staging/
Ignored: summarize_vert_meas.nb.html
Ignored: test_phylogeny.nb.html
Ignored: test_vertebraspace.nb.html
Ignored: vert_evol.Rproj
Untracked files:
Untracked: Main.html
Untracked: ProcessFCSVfiles.Rmd
Untracked: VertPGLS.html
Untracked: gg_saver.R
Untracked: output/BodyDistribution.pdf
Untracked: output/MasterVert_Measurements.csv
Untracked: output/mean_d_alphaPos_CBL.pdf
Untracked: output/pair_plot.pdf
Untracked: output/plot_example_data_figure.pdf
Untracked: output/stats_table.rtf
Untracked: plot_fits_and_summary.Rmd
Untracked: summarize_vert_meas.html
Untracked: testtree.csv
Untracked: vert_tree.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/02-CheckSpeciesMatch.Rmd
) and HTML (docs/02-CheckSpeciesMatch.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | edeae3c | Eric Tytell | 2021-12-30 | Rename notebooks to indicate order |
library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
✓ ggplot2 3.3.5 ✓ purrr 0.3.4
✓ tibble 3.1.4 ✓ dplyr 1.0.7
✓ tidyr 1.1.3 ✓ stringr 1.4.0
✓ readr 2.0.1 ✓ forcats 0.5.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
library(phytools)
Loading required package: ape
Loading required package: maps
Attaching package: 'maps'
The following object is masked from 'package:purrr':
map
library(rfishbase)
library(here)
here() starts at /Users/etytel01/Documents/Vertebrae/Code
fullvertmeas <- read_csv(here('data', "MasterVert_Measurements.csv")) %>%
separate(MatchSpecies, into=c("MatchGenus", "MatchSpecies"), sep="_")
Rows: 585 Columns: 54
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (16): Species, MatchSpecies, Family, Body Shape, Habitat_Initial, Habita...
dbl (38): Indiv, Pos, SL, CBL_raw, alpha_Pos_raw, d_raw, D_Pos_raw, alpha_An...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
fullvertmeas
# A tibble: 585 × 55
Species MatchGenus MatchSpecies Family Indiv Pos SL CBL_raw
<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 Alectis_ciliaris <NA> <NA> <NA> 1 40 799 24.9
2 Alectis_ciliaris <NA> <NA> <NA> 1 50 799 34.4
3 Alectis_ciliaris <NA> <NA> <NA> 1 60 799 35.8
4 Alectis_ciliaris <NA> <NA> <NA> 1 70 799 36.6
5 Alectis_ciliaris <NA> <NA> <NA> 1 80 799 35.2
6 Alectis_ciliaris <NA> <NA> <NA> 1 90 799 32.8
7 Amia_calva <NA> <NA> <NA> 1 30 1438 11.8
8 Amia_calva <NA> <NA> <NA> 1 40 1438 31.8
9 Amia_calva <NA> <NA> <NA> 1 50 1438 15.6
10 Amia_calva <NA> <NA> <NA> 1 60 1438 32.1
# … with 575 more rows, and 47 more variables: alpha_Pos_raw <dbl>,
# d_raw <dbl>, D_Pos_raw <dbl>, alpha_Ant_raw <dbl>, D_Ant_raw <dbl>,
# CBL <dbl>, alpha_Pos <dbl>, d <dbl>, D_Pos <dbl>, alpha_Ant <dbl>,
# D_Ant <dbl>, Pt1x <dbl>, Pt1y <dbl>, Pt2x <dbl>, Pt2y <dbl>, Pt3x <dbl>,
# Pt3y <dbl>, Pt4x <dbl>, Pt4y <dbl>, Pt5x <dbl>, Pt5y <dbl>, Pt6x <dbl>,
# Pt6y <dbl>, Pt7x <dbl>, Pt7y <dbl>, Body Shape <chr>,
# Habitat_Initial <chr>, Habitat_Friedman <chr>, Habitat_FishBase <chr>, …
fullvertmeas %>%
filter(is.na(Water_Type))
# A tibble: 0 × 55
# … with 55 variables: Species <chr>, MatchGenus <chr>, MatchSpecies <chr>,
# Family <chr>, Indiv <dbl>, Pos <dbl>, SL <dbl>, CBL_raw <dbl>,
# alpha_Pos_raw <dbl>, d_raw <dbl>, D_Pos_raw <dbl>, alpha_Ant_raw <dbl>,
# D_Ant_raw <dbl>, CBL <dbl>, alpha_Pos <dbl>, d <dbl>, D_Pos <dbl>,
# alpha_Ant <dbl>, D_Ant <dbl>, Pt1x <dbl>, Pt1y <dbl>, Pt2x <dbl>,
# Pt2y <dbl>, Pt3x <dbl>, Pt3y <dbl>, Pt4x <dbl>, Pt4y <dbl>, Pt5x <dbl>,
# Pt5y <dbl>, Pt6x <dbl>, Pt6y <dbl>, Pt7x <dbl>, Pt7y <dbl>, …
This is the whole Betancur-R tree.
tree <- read.tree(here('data', '12862_2017_958_MOESM2_ESM.tre'))
Get the names of species from the tree.
allspecies <- tibble(tree$tip.label)
colnames(allspecies) <- c('FullName')
head(allspecies)
# A tibble: 6 × 1
FullName
<chr>
1 Rajidae_Leucoraja_erinacea_G01356
2 Callorhinchidae_Callorhinchus_milii_G01235
3 Latimeriidae_Latimeria_chalumnae_G01347
4 Neoceratodontidae_Neoceratodus_forsteri_G01534
5 Protopteridae_Protopterus_aethiopicus_annectens_G01451
6 Lepidosirenidae_Lepidosiren_paradoxa_G01352
And split the names into family, genus, and species.
allspecies <-
allspecies %>% separate(FullName, sep='_', into=c('Family', 'Genus', 'Species'),
extra='drop', remove=FALSE)
Set up the tip number (just the row)
allspecies$Tip <- seq_len(nrow(allspecies))
Now let’s look at just the distinct species in our data set.
ourspecies <-
fullvertmeas %>%
distinct(Species, .keep_all=TRUE) %>%
separate(Species, sep='_', into=c("Genus", "Species")) %>%
select(Genus, Species, Family, MatchGenus, MatchSpecies)
ourspecies
# A tibble: 85 × 5
Genus Species Family MatchGenus MatchSpecies
<chr> <chr> <chr> <chr> <chr>
1 Alectis ciliaris <NA> <NA> <NA>
2 Amia calva <NA> <NA> <NA>
3 Anoplogaster cornuta <NA> <NA> <NA>
4 Aphareus furca <NA> <NA> <NA>
5 Catostomus catostomus <NA> <NA> <NA>
6 Cephalopholis argus <NA> <NA> <NA>
7 Chaetostoma lineopunctatum <NA> <NA> <NA>
8 Centropomus undecimalis <NA> <NA> <NA>
9 Osteoglossum bicirrhosum <NA> <NA> <NA>
10 Chanos chanos <NA> <NA> <NA>
# … with 75 more rows
Join up our species with the data table of all of the species.
ourspecies <-
ourspecies %>%
left_join(allspecies, by = c("Genus", "Species")) %>%
mutate(Family = coalesce(Family.x, Family.y)) %>%
select(-Family.x, -Family.y)
We are working to set up new columns called MatchGenus and MatchSpecies and that are the matching genus and species in the Betancur tree.
For species that have matches in the big tree (so that Tip is not NA), the “MatchSpecies” and “MatchGenus” are just the same as Genus and Species.
ourspecies <-
ourspecies %>%
mutate(MatchSpecies = if_else(!is.na(Tip), Species, MatchSpecies),
MatchGenus = if_else(!is.na(Tip), Genus, MatchGenus))
For species that aren’t in the Betancur tree, we have to find the most appropriate other species. First, find species in our data set that are not in the Betancur tree.
missingspecies <- anti_join(ourspecies, allspecies, by=c("Genus", "Species"))
missingspecies
# A tibble: 29 × 7
Genus Species MatchGenus MatchSpecies FullName Tip Family
<chr> <chr> <chr> <chr> <chr> <int> <chr>
1 Catostomus catostomus <NA> <NA> <NA> NA <NA>
2 Chaetostoma lineopunctatum <NA> <NA> <NA> NA <NA>
3 Roeboides affinis <NA> <NA> <NA> NA <NA>
4 Myripristis jacobus <NA> <NA> <NA> NA <NA>
5 Mirorictus taningi Searsia koefoedi <NA> NA Platytr…
6 Ophidion scrippsae <NA> <NA> <NA> NA <NA>
7 Oncorhynchus gorbuscha <NA> <NA> <NA> NA <NA>
8 Coryphaenoides filifer <NA> <NA> <NA> NA <NA>
9 Anodontostoma chacunda Dorosoma cepedianum <NA> NA Clupeid…
10 Apteronotus cuchillejo <NA> <NA> <NA> NA <NA>
# … with 19 more rows
Look for species in the Betancur tree in the same genera as the missing species:
left_join(missingspecies, allspecies, by=c("Genus")) %>%
group_by(Genus, Species.x) %>%
summarize(n = sum(!is.na(Species.y)))
`summarise()` has grouped output by 'Genus'. You can override using the `.groups` argument.
# A tibble: 29 × 3
# Groups: Genus [27]
Genus Species.x n
<chr> <chr> <int>
1 Abramis brama 0
2 Ammodytes personatus 2
3 Anodontostoma chacunda 0
4 Anoplarchus insignis 0
5 Anoplarchus purpurescens 0
6 Apodichthys flavidus 0
7 Apteronotus cuchillejo 1
8 Catostomus catostomus 6
9 Chaetostoma lineopunctatum 1
10 Coryphaenoides filifer 4
# … with 19 more rows
For species and genera with 1 or more matches in the Betancur tree, we can assume that the phylogenetic relationship is the same as another species in the genus, so long as our data set doesn’t have more than one species in that genus.
Check for genera for which we have multiple species:
missingspecies <-
missingspecies %>%
group_by(Genus) %>%
mutate(n_in_genus = sum(!is.na(Species)))
missingspecies %>%
filter(n_in_genus > 1)
# A tibble: 4 × 8
# Groups: Genus [2]
Genus Species MatchGenus MatchSpecies FullName Tip Family n_in_genus
<chr> <chr> <chr> <chr> <chr> <int> <chr> <int>
1 Anoplarchus insignis <NA> <NA> <NA> NA Stich… 2
2 Anoplarchus purpurescens <NA> <NA> <NA> NA Stich… 2
3 Xiphister atropurpureus <NA> <NA> <NA> NA Stich… 2
4 Xiphister mucosus <NA> <NA> <NA> NA Stich… 2
For species where the genus only shows up once in our data set, we can choose any other species in the Betancur tree that is in the same genus
matchspecies <-
missingspecies %>%
filter(n_in_genus == 1 & is.na(MatchSpecies)) %>%
left_join(allspecies, by=c("Genus")) %>%
group_by(Genus, Species.x) %>%
mutate(Family = coalesce(Family.x, Family.y)) %>%
summarize(MatchSpecies = first(Species.y),
MatchGenus = if_else(!is.na(MatchSpecies), first(Genus), NA_character_),
Tip = first(Tip.y),
Family = first(Family)) %>%
rename(Species = Species.x)
`summarise()` has grouped output by 'Genus'. You can override using the `.groups` argument.
matchspecies
# A tibble: 14 × 6
# Groups: Genus [14]
Genus Species MatchSpecies MatchGenus Tip Family
<chr> <chr> <chr> <chr> <int> <chr>
1 Ammodytes personatus dubius Ammodytes 1696 Ammodytidae
2 Apteronotus cuchillejo albifrons Apteronotus 248 Apteronoti…
3 Catostomus catostomus plebius Catostomus 84 Catostomid…
4 Chaetostoma lineopunctatum breve Chaetostoma 274 Loricariid…
5 Coryphaenoides filifer armatus Coryphaenoides 611 Macrouridae
6 Hirundichthys rondeletii marginatus Hirundichthys 718 Exocoetidae
7 Lumpenus sagitta fabricii Lumpenus 1241 Stichaeidae
8 Myripristis jacobus murdjan Myripristis 670 Holocentri…
9 Oncorhynchus gorbuscha nerka Oncorhynchus 466 Salmonidae
10 Ophidion scrippsae holbrookii Ophidion 1986 Ophidiidae
11 Poecilia reticulata latipinna Poecilia 732 Poeciliidae
12 Remora remora osteochir Remora 1047 Echeneidae
13 Roeboides affinis descalvadensis Roeboides 375 Characidae
14 Trachurus trachurus lathami Trachurus 1019 Carangidae
Here is the full list of our species and the best matching species from the Betancur tree.
matchspecies <-
ourspecies %>%
left_join(matchspecies, by = c("Genus", "Species")) %>%
mutate(MatchGenus = coalesce(MatchGenus.x, MatchGenus.y),
MatchSpecies = coalesce(MatchSpecies.x, MatchSpecies.y),
Family = coalesce(Family.x, Family.y),
Tip = coalesce(Tip.x, Tip.y)) %>%
select(-(ends_with('.x') | ends_with('.y'))) %>%
select(Genus, Species, MatchGenus, MatchSpecies) %>%
unite("MatchSpecies", c(MatchGenus, MatchSpecies)) %>%
unite("Species", c(Genus, Species)) %>%
mutate(MatchSpecies = if_else(MatchSpecies == "NA_NA", NA_character_, MatchSpecies))
matchspecies
# A tibble: 85 × 2
Species MatchSpecies
<chr> <chr>
1 Alectis_ciliaris Alectis_ciliaris
2 Amia_calva Amia_calva
3 Anoplogaster_cornuta Anoplogaster_cornuta
4 Aphareus_furca Aphareus_furca
5 Catostomus_catostomus Catostomus_plebius
6 Cephalopholis_argus Cephalopholis_argus
7 Chaetostoma_lineopunctatum Chaetostoma_breve
8 Centropomus_undecimalis Centropomus_undecimalis
9 Osteoglossum_bicirrhosum Osteoglossum_bicirrhosum
10 Chanos_chanos Chanos_chanos
# … with 75 more rows
These are the species we couldn’t match:
matchspecies %>%
filter(is.na(MatchSpecies))
# A tibble: 4 × 2
Species MatchSpecies
<chr> <chr>
1 Anoplarchus_insignis <NA>
2 Anoplarchus_purpurescens <NA>
3 Xiphister_atropurpureus <NA>
4 Xiphister_mucosus <NA>
Set up the final data table with a filled in MatchSpecies column.
fullvertmeas_matched <-
fullvertmeas %>%
unite("MatchSpecies", c(MatchGenus, MatchSpecies)) %>%
mutate(MatchSpecies = if_else(MatchSpecies == "NA_NA", NA_character_, MatchSpecies)) %>%
left_join(matchspecies, by = c("Species")) %>%
mutate(MatchSpecies = coalesce(MatchSpecies.x, MatchSpecies.y)) %>%
select(-(ends_with(".x") | ends_with(".y")))
And write it out!
write_csv(fullvertmeas_matched, here('output', "MasterVert_Measurements_Matched.csv"))
Load in the matched data set.
fullvertmeas <- read_csv(here('output', "MasterVert_Measurements_Matched.csv")) %>%
separate(MatchSpecies, into=c("MatchGenus", "MatchSpecies"), sep="_") %>%
relocate(MatchGenus, MatchSpecies, .after=Species)
Rows: 585 Columns: 54
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (16): Species, Family, Body Shape, Habitat_Initial, Habitat_Friedman, Ha...
dbl (38): Indiv, Pos, SL, CBL_raw, alpha_Pos_raw, d_raw, D_Pos_raw, alpha_An...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
fullvertmeas
# A tibble: 585 × 55
Species MatchGenus MatchSpecies Family Indiv Pos SL CBL_raw
<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 Alectis_ciliaris Alectis ciliaris <NA> 1 40 799 24.9
2 Alectis_ciliaris Alectis ciliaris <NA> 1 50 799 34.4
3 Alectis_ciliaris Alectis ciliaris <NA> 1 60 799 35.8
4 Alectis_ciliaris Alectis ciliaris <NA> 1 70 799 36.6
5 Alectis_ciliaris Alectis ciliaris <NA> 1 80 799 35.2
6 Alectis_ciliaris Alectis ciliaris <NA> 1 90 799 32.8
7 Amia_calva Amia calva <NA> 1 30 1438 11.8
8 Amia_calva Amia calva <NA> 1 40 1438 31.8
9 Amia_calva Amia calva <NA> 1 50 1438 15.6
10 Amia_calva Amia calva <NA> 1 60 1438 32.1
# … with 575 more rows, and 47 more variables: alpha_Pos_raw <dbl>,
# d_raw <dbl>, D_Pos_raw <dbl>, alpha_Ant_raw <dbl>, D_Ant_raw <dbl>,
# CBL <dbl>, alpha_Pos <dbl>, d <dbl>, D_Pos <dbl>, alpha_Ant <dbl>,
# D_Ant <dbl>, Pt1x <dbl>, Pt1y <dbl>, Pt2x <dbl>, Pt2y <dbl>, Pt3x <dbl>,
# Pt3y <dbl>, Pt4x <dbl>, Pt4y <dbl>, Pt5x <dbl>, Pt5y <dbl>, Pt6x <dbl>,
# Pt6y <dbl>, Pt7x <dbl>, Pt7y <dbl>, Body Shape <chr>,
# Habitat_Initial <chr>, Habitat_Friedman <chr>, Habitat_FishBase <chr>, …
Find the matches in the full phylogeny.
fullvertmeas.species <- left_join(fullvertmeas, allspecies, by=c("MatchGenus"="Genus", "MatchSpecies"="Species"))
And check to see how many species we have. It should be the same number as those in the matchspecies
data set, minus those we couldn’t match.
checkspecies <-
fullvertmeas.species %>%
filter(!is.na(Tip)) %>%
distinct(Species, .keep_all = TRUE)
nrow(checkspecies) == nrow(filter(matchspecies, !is.na(MatchSpecies)))
[1] TRUE
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices datasets utils methods base
other attached packages:
[1] here_1.0.1 rfishbase_3.1.9 phytools_0.7-80 maps_3.3.0
[5] ape_5.5 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.7
[9] purrr_0.3.4 readr_2.0.1 tidyr_1.1.3 tibble_3.1.4
[13] ggplot2_3.3.5 tidyverse_1.3.1
loaded via a namespace (and not attached):
[1] nlme_3.1-153 fs_1.5.0 bit64_4.0.5
[4] lubridate_1.7.10 progress_1.2.2 httr_1.4.2
[7] rprojroot_2.0.2 gh_1.3.0 numDeriv_2016.8-1.1
[10] tools_4.1.2 backports_1.2.1 utf8_1.2.2
[13] R6_2.5.1 DBI_1.1.1 colorspace_2.0-2
[16] withr_2.4.2 prettyunits_1.1.1 tidyselect_1.1.1
[19] mnormt_2.0.2 phangorn_2.7.1 bit_4.0.4
[22] curl_4.3.2 compiler_4.1.2 git2r_0.29.0
[25] cli_3.0.1 rvest_1.0.1 expm_0.999-6
[28] xml2_1.3.2 scales_1.1.1 quadprog_1.5-8
[31] digest_0.6.27 rmarkdown_2.10 pkgconfig_2.0.3
[34] htmltools_0.5.2 plotrix_3.8-2 dbplyr_2.1.1
[37] fastmap_1.1.0 rlang_0.4.11 readxl_1.3.1
[40] rstudioapi_0.13 generics_0.1.0 combinat_0.0-8
[43] jsonlite_1.7.2 vroom_1.5.4 magrittr_2.0.1
[46] Matrix_1.3-4 Rcpp_1.0.7 munsell_0.5.0
[49] fansi_0.5.0 lifecycle_1.0.0 scatterplot3d_0.3-41
[52] stringi_1.7.4 whisker_0.4 yaml_2.2.1
[55] clusterGeneration_1.3.7 MASS_7.3-54 grid_4.1.2
[58] parallel_4.1.2 promises_1.2.0.1 crayon_1.4.1
[61] lattice_0.20-45 haven_2.4.3 hms_1.1.0
[64] tmvnsim_1.0-2 knitr_1.34 pillar_1.6.2
[67] igraph_1.2.6 codetools_0.2-18 fastmatch_1.1-3
[70] reprex_2.0.1 glue_1.4.2 evaluate_0.14
[73] arkdb_0.0.12 renv_0.14.0 modelr_0.1.8
[76] vctrs_0.3.8 tzdb_0.1.2 httpuv_1.6.4
[79] cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
[82] cachem_1.0.6 xfun_0.25 broom_0.7.9
[85] coda_0.19-4 later_1.3.0 memoise_2.0.0
[88] workflowr_1.7.0 ellipsis_0.3.2