Last updated: 2022-04-11

Checks: 7 0

Knit directory: Code/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211230) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e47dde2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    Flexibility Comparisons.nb.html
    Ignored:    Main.nb.html
    Ignored:    PGLS.FullData.nb.html
    Ignored:    PGLSforeachMeasFeature.nb.html
    Ignored:    PGLSwithPCA_Dims.nb.html
    Ignored:    PreppedVertMeas.nb.html
    Ignored:    ProcessCymatogasterFiles.nb.html
    Ignored:    ProcessFCSVfiles.nb.html
    Ignored:    TestingHabitatwithFriedmanData.nb.html
    Ignored:    Trilok_tree.nb.html
    Ignored:    VertLM.nb.html
    Ignored:    VertMeasLDA_Attempt.nb.html
    Ignored:    VertPGLS.nb.html
    Ignored:    VertPairs.nb.html
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/10-VertLM.nb.html
    Ignored:    analysis/20-plot_phylogeny.nb.html
    Ignored:    analysis/21-plot_fits_and_summary.nb.html
    Ignored:    analysis/CheckSpeciesMatch.nb.html
    Ignored:    caper_test.nb.html
    Ignored:    data/.DS_Store
    Ignored:    ggtree_attempt.nb.html
    Ignored:    plot_example_data.nb.html
    Ignored:    plot_fits_and_summary.nb.html
    Ignored:    plot_phylogeny.nb.html
    Ignored:    renv/library/
    Ignored:    renv/staging/
    Ignored:    summarize_vert_meas.nb.html
    Ignored:    test_phylogeny.nb.html
    Ignored:    test_vertebraspace.nb.html
    Ignored:    vert_evol.Rproj

Untracked files:
    Untracked:  Main.html
    Untracked:  ProcessFCSVfiles.Rmd
    Untracked:  VertPGLS.html
    Untracked:  gg_saver.R
    Untracked:  output/BodyDistribution.pdf
    Untracked:  output/MasterVert_Measurements.csv
    Untracked:  output/mean_d_alphaPos_CBL.pdf
    Untracked:  output/pair_plot.pdf
    Untracked:  output/plot_example_data_figure.pdf
    Untracked:  output/stats_table.rtf
    Untracked:  plot_fits_and_summary.Rmd
    Untracked:  summarize_vert_meas.html
    Untracked:  testtree.csv
    Untracked:  vert_tree.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/02-CheckSpeciesMatch.Rmd) and HTML (docs/02-CheckSpeciesMatch.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd edeae3c Eric Tytell 2021-12-30 Rename notebooks to indicate order

library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
✓ ggplot2 3.3.5     ✓ purrr   0.3.4
✓ tibble  3.1.4     ✓ dplyr   1.0.7
✓ tidyr   1.1.3     ✓ stringr 1.4.0
✓ readr   2.0.1     ✓ forcats 0.5.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
library(phytools)
Loading required package: ape
Loading required package: maps

Attaching package: 'maps'
The following object is masked from 'package:purrr':

    map
library(rfishbase)
library(here)
here() starts at /Users/etytel01/Documents/Vertebrae/Code

Load data

Vertebral measurements

fullvertmeas <- read_csv(here('data', "MasterVert_Measurements.csv")) %>%
  separate(MatchSpecies, into=c("MatchGenus", "MatchSpecies"), sep="_")
Rows: 585 Columns: 54
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (16): Species, MatchSpecies, Family, Body Shape, Habitat_Initial, Habita...
dbl (38): Indiv, Pos, SL, CBL_raw, alpha_Pos_raw, d_raw, D_Pos_raw, alpha_An...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
fullvertmeas
# A tibble: 585 × 55
   Species          MatchGenus MatchSpecies Family Indiv   Pos    SL CBL_raw
   <chr>            <chr>      <chr>        <chr>  <dbl> <dbl> <dbl>   <dbl>
 1 Alectis_ciliaris <NA>       <NA>         <NA>       1    40   799    24.9
 2 Alectis_ciliaris <NA>       <NA>         <NA>       1    50   799    34.4
 3 Alectis_ciliaris <NA>       <NA>         <NA>       1    60   799    35.8
 4 Alectis_ciliaris <NA>       <NA>         <NA>       1    70   799    36.6
 5 Alectis_ciliaris <NA>       <NA>         <NA>       1    80   799    35.2
 6 Alectis_ciliaris <NA>       <NA>         <NA>       1    90   799    32.8
 7 Amia_calva       <NA>       <NA>         <NA>       1    30  1438    11.8
 8 Amia_calva       <NA>       <NA>         <NA>       1    40  1438    31.8
 9 Amia_calva       <NA>       <NA>         <NA>       1    50  1438    15.6
10 Amia_calva       <NA>       <NA>         <NA>       1    60  1438    32.1
# … with 575 more rows, and 47 more variables: alpha_Pos_raw <dbl>,
#   d_raw <dbl>, D_Pos_raw <dbl>, alpha_Ant_raw <dbl>, D_Ant_raw <dbl>,
#   CBL <dbl>, alpha_Pos <dbl>, d <dbl>, D_Pos <dbl>, alpha_Ant <dbl>,
#   D_Ant <dbl>, Pt1x <dbl>, Pt1y <dbl>, Pt2x <dbl>, Pt2y <dbl>, Pt3x <dbl>,
#   Pt3y <dbl>, Pt4x <dbl>, Pt4y <dbl>, Pt5x <dbl>, Pt5y <dbl>, Pt6x <dbl>,
#   Pt6y <dbl>, Pt7x <dbl>, Pt7y <dbl>, Body Shape <chr>,
#   Habitat_Initial <chr>, Habitat_Friedman <chr>, Habitat_FishBase <chr>, …
fullvertmeas %>%
  filter(is.na(Water_Type))
# A tibble: 0 × 55
# … with 55 variables: Species <chr>, MatchGenus <chr>, MatchSpecies <chr>,
#   Family <chr>, Indiv <dbl>, Pos <dbl>, SL <dbl>, CBL_raw <dbl>,
#   alpha_Pos_raw <dbl>, d_raw <dbl>, D_Pos_raw <dbl>, alpha_Ant_raw <dbl>,
#   D_Ant_raw <dbl>, CBL <dbl>, alpha_Pos <dbl>, d <dbl>, D_Pos <dbl>,
#   alpha_Ant <dbl>, D_Ant <dbl>, Pt1x <dbl>, Pt1y <dbl>, Pt2x <dbl>,
#   Pt2y <dbl>, Pt3x <dbl>, Pt3y <dbl>, Pt4x <dbl>, Pt4y <dbl>, Pt5x <dbl>,
#   Pt5y <dbl>, Pt6x <dbl>, Pt6y <dbl>, Pt7x <dbl>, Pt7y <dbl>, …

Phylogeny

This is the whole Betancur-R tree.

tree <- read.tree(here('data', '12862_2017_958_MOESM2_ESM.tre'))

Get the names of species from the tree.

allspecies <- tibble(tree$tip.label)
colnames(allspecies) <- c('FullName')
head(allspecies)
# A tibble: 6 × 1
  FullName                                              
  <chr>                                                 
1 Rajidae_Leucoraja_erinacea_G01356                     
2 Callorhinchidae_Callorhinchus_milii_G01235            
3 Latimeriidae_Latimeria_chalumnae_G01347               
4 Neoceratodontidae_Neoceratodus_forsteri_G01534        
5 Protopteridae_Protopterus_aethiopicus_annectens_G01451
6 Lepidosirenidae_Lepidosiren_paradoxa_G01352           

And split the names into family, genus, and species.

allspecies <- 
  allspecies %>% separate(FullName, sep='_', into=c('Family', 'Genus', 'Species'), 
                          extra='drop', remove=FALSE)

Set up the tip number (just the row)

allspecies$Tip <- seq_len(nrow(allspecies))

Match our species to the tree

Now let’s look at just the distinct species in our data set.

ourspecies <-
  fullvertmeas %>%
  distinct(Species, .keep_all=TRUE) %>%
  separate(Species, sep='_', into=c("Genus", "Species")) %>%
  select(Genus, Species, Family, MatchGenus, MatchSpecies)
ourspecies
# A tibble: 85 × 5
   Genus         Species        Family MatchGenus MatchSpecies
   <chr>         <chr>          <chr>  <chr>      <chr>       
 1 Alectis       ciliaris       <NA>   <NA>       <NA>        
 2 Amia          calva          <NA>   <NA>       <NA>        
 3 Anoplogaster  cornuta        <NA>   <NA>       <NA>        
 4 Aphareus      furca          <NA>   <NA>       <NA>        
 5 Catostomus    catostomus     <NA>   <NA>       <NA>        
 6 Cephalopholis argus          <NA>   <NA>       <NA>        
 7 Chaetostoma   lineopunctatum <NA>   <NA>       <NA>        
 8 Centropomus   undecimalis    <NA>   <NA>       <NA>        
 9 Osteoglossum  bicirrhosum    <NA>   <NA>       <NA>        
10 Chanos        chanos         <NA>   <NA>       <NA>        
# … with 75 more rows

Join up our species with the data table of all of the species.

ourspecies <-
  ourspecies %>%
  left_join(allspecies, by = c("Genus", "Species")) %>%
  mutate(Family = coalesce(Family.x, Family.y)) %>%
  select(-Family.x, -Family.y)

We are working to set up new columns called MatchGenus and MatchSpecies and that are the matching genus and species in the Betancur tree.

For species that have matches in the big tree (so that Tip is not NA), the “MatchSpecies” and “MatchGenus” are just the same as Genus and Species.

ourspecies <-
  ourspecies %>%
  mutate(MatchSpecies = if_else(!is.na(Tip), Species, MatchSpecies),
         MatchGenus = if_else(!is.na(Tip), Genus, MatchGenus))

Deal with species that do not match

For species that aren’t in the Betancur tree, we have to find the most appropriate other species. First, find species in our data set that are not in the Betancur tree.

missingspecies <- anti_join(ourspecies, allspecies, by=c("Genus", "Species"))
missingspecies
# A tibble: 29 × 7
   Genus          Species        MatchGenus MatchSpecies FullName   Tip Family  
   <chr>          <chr>          <chr>      <chr>        <chr>    <int> <chr>   
 1 Catostomus     catostomus     <NA>       <NA>         <NA>        NA <NA>    
 2 Chaetostoma    lineopunctatum <NA>       <NA>         <NA>        NA <NA>    
 3 Roeboides      affinis        <NA>       <NA>         <NA>        NA <NA>    
 4 Myripristis    jacobus        <NA>       <NA>         <NA>        NA <NA>    
 5 Mirorictus     taningi        Searsia    koefoedi     <NA>        NA Platytr…
 6 Ophidion       scrippsae      <NA>       <NA>         <NA>        NA <NA>    
 7 Oncorhynchus   gorbuscha      <NA>       <NA>         <NA>        NA <NA>    
 8 Coryphaenoides filifer        <NA>       <NA>         <NA>        NA <NA>    
 9 Anodontostoma  chacunda       Dorosoma   cepedianum   <NA>        NA Clupeid…
10 Apteronotus    cuchillejo     <NA>       <NA>         <NA>        NA <NA>    
# … with 19 more rows

Look for species in the Betancur tree in the same genera as the missing species:

left_join(missingspecies, allspecies, by=c("Genus")) %>%
  group_by(Genus, Species.x) %>%
  summarize(n = sum(!is.na(Species.y)))
`summarise()` has grouped output by 'Genus'. You can override using the `.groups` argument.
# A tibble: 29 × 3
# Groups:   Genus [27]
   Genus          Species.x          n
   <chr>          <chr>          <int>
 1 Abramis        brama              0
 2 Ammodytes      personatus         2
 3 Anodontostoma  chacunda           0
 4 Anoplarchus    insignis           0
 5 Anoplarchus    purpurescens       0
 6 Apodichthys    flavidus           0
 7 Apteronotus    cuchillejo         1
 8 Catostomus     catostomus         6
 9 Chaetostoma    lineopunctatum     1
10 Coryphaenoides filifer            4
# … with 19 more rows

For species and genera with 1 or more matches in the Betancur tree, we can assume that the phylogenetic relationship is the same as another species in the genus, so long as our data set doesn’t have more than one species in that genus.

Check for genera for which we have multiple species:

missingspecies <-
  missingspecies %>%
  group_by(Genus) %>%
  mutate(n_in_genus = sum(!is.na(Species)))

missingspecies %>%
  filter(n_in_genus > 1)
# A tibble: 4 × 8
# Groups:   Genus [2]
  Genus       Species       MatchGenus MatchSpecies FullName   Tip Family n_in_genus
  <chr>       <chr>         <chr>      <chr>        <chr>    <int> <chr>       <int>
1 Anoplarchus insignis      <NA>       <NA>         <NA>        NA Stich…          2
2 Anoplarchus purpurescens  <NA>       <NA>         <NA>        NA Stich…          2
3 Xiphister   atropurpureus <NA>       <NA>         <NA>        NA Stich…          2
4 Xiphister   mucosus       <NA>       <NA>         <NA>        NA Stich…          2

For species where the genus only shows up once in our data set, we can choose any other species in the Betancur tree that is in the same genus

matchspecies <-
  missingspecies %>%
  filter(n_in_genus == 1 & is.na(MatchSpecies)) %>%
  left_join(allspecies, by=c("Genus")) %>%
  group_by(Genus, Species.x) %>%
  mutate(Family = coalesce(Family.x, Family.y)) %>%
  summarize(MatchSpecies = first(Species.y),
            MatchGenus = if_else(!is.na(MatchSpecies), first(Genus), NA_character_),
            Tip = first(Tip.y),
            Family = first(Family)) %>%
  rename(Species = Species.x)
`summarise()` has grouped output by 'Genus'. You can override using the `.groups` argument.
matchspecies
# A tibble: 14 × 6
# Groups:   Genus [14]
   Genus          Species        MatchSpecies   MatchGenus       Tip Family     
   <chr>          <chr>          <chr>          <chr>          <int> <chr>      
 1 Ammodytes      personatus     dubius         Ammodytes       1696 Ammodytidae
 2 Apteronotus    cuchillejo     albifrons      Apteronotus      248 Apteronoti…
 3 Catostomus     catostomus     plebius        Catostomus        84 Catostomid…
 4 Chaetostoma    lineopunctatum breve          Chaetostoma      274 Loricariid…
 5 Coryphaenoides filifer        armatus        Coryphaenoides   611 Macrouridae
 6 Hirundichthys  rondeletii     marginatus     Hirundichthys    718 Exocoetidae
 7 Lumpenus       sagitta        fabricii       Lumpenus        1241 Stichaeidae
 8 Myripristis    jacobus        murdjan        Myripristis      670 Holocentri…
 9 Oncorhynchus   gorbuscha      nerka          Oncorhynchus     466 Salmonidae 
10 Ophidion       scrippsae      holbrookii     Ophidion        1986 Ophidiidae 
11 Poecilia       reticulata     latipinna      Poecilia         732 Poeciliidae
12 Remora         remora         osteochir      Remora          1047 Echeneidae 
13 Roeboides      affinis        descalvadensis Roeboides        375 Characidae 
14 Trachurus      trachurus      lathami        Trachurus       1019 Carangidae 

Here is the full list of our species and the best matching species from the Betancur tree.

matchspecies <-
  ourspecies %>%
  left_join(matchspecies, by = c("Genus", "Species")) %>%
  mutate(MatchGenus = coalesce(MatchGenus.x, MatchGenus.y),
         MatchSpecies = coalesce(MatchSpecies.x, MatchSpecies.y),
         Family = coalesce(Family.x, Family.y),
         Tip = coalesce(Tip.x, Tip.y)) %>%
  select(-(ends_with('.x') | ends_with('.y'))) %>%
  select(Genus, Species, MatchGenus, MatchSpecies) %>%
  unite("MatchSpecies", c(MatchGenus, MatchSpecies)) %>%
  unite("Species", c(Genus, Species))  %>%
  mutate(MatchSpecies = if_else(MatchSpecies == "NA_NA", NA_character_, MatchSpecies))

matchspecies
# A tibble: 85 × 2
   Species                    MatchSpecies            
   <chr>                      <chr>                   
 1 Alectis_ciliaris           Alectis_ciliaris        
 2 Amia_calva                 Amia_calva              
 3 Anoplogaster_cornuta       Anoplogaster_cornuta    
 4 Aphareus_furca             Aphareus_furca          
 5 Catostomus_catostomus      Catostomus_plebius      
 6 Cephalopholis_argus        Cephalopholis_argus     
 7 Chaetostoma_lineopunctatum Chaetostoma_breve       
 8 Centropomus_undecimalis    Centropomus_undecimalis 
 9 Osteoglossum_bicirrhosum   Osteoglossum_bicirrhosum
10 Chanos_chanos              Chanos_chanos           
# … with 75 more rows

These are the species we couldn’t match:

matchspecies %>%
  filter(is.na(MatchSpecies))
# A tibble: 4 × 2
  Species                  MatchSpecies
  <chr>                    <chr>       
1 Anoplarchus_insignis     <NA>        
2 Anoplarchus_purpurescens <NA>        
3 Xiphister_atropurpureus  <NA>        
4 Xiphister_mucosus        <NA>        

Set up the final data table with a filled in MatchSpecies column.

fullvertmeas_matched <-
  fullvertmeas %>%
  unite("MatchSpecies", c(MatchGenus, MatchSpecies)) %>%
  mutate(MatchSpecies = if_else(MatchSpecies == "NA_NA", NA_character_, MatchSpecies)) %>%
  left_join(matchspecies, by = c("Species")) %>%
  mutate(MatchSpecies = coalesce(MatchSpecies.x, MatchSpecies.y)) %>%
  select(-(ends_with(".x") | ends_with(".y")))

And write it out!

write_csv(fullvertmeas_matched, here('output', "MasterVert_Measurements_Matched.csv"))

Check output file

Load in the matched data set.

fullvertmeas <- read_csv(here('output', "MasterVert_Measurements_Matched.csv")) %>%
  separate(MatchSpecies, into=c("MatchGenus", "MatchSpecies"), sep="_") %>%
  relocate(MatchGenus, MatchSpecies, .after=Species)
Rows: 585 Columns: 54
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (16): Species, Family, Body Shape, Habitat_Initial, Habitat_Friedman, Ha...
dbl (38): Indiv, Pos, SL, CBL_raw, alpha_Pos_raw, d_raw, D_Pos_raw, alpha_An...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
fullvertmeas
# A tibble: 585 × 55
   Species          MatchGenus MatchSpecies Family Indiv   Pos    SL CBL_raw
   <chr>            <chr>      <chr>        <chr>  <dbl> <dbl> <dbl>   <dbl>
 1 Alectis_ciliaris Alectis    ciliaris     <NA>       1    40   799    24.9
 2 Alectis_ciliaris Alectis    ciliaris     <NA>       1    50   799    34.4
 3 Alectis_ciliaris Alectis    ciliaris     <NA>       1    60   799    35.8
 4 Alectis_ciliaris Alectis    ciliaris     <NA>       1    70   799    36.6
 5 Alectis_ciliaris Alectis    ciliaris     <NA>       1    80   799    35.2
 6 Alectis_ciliaris Alectis    ciliaris     <NA>       1    90   799    32.8
 7 Amia_calva       Amia       calva        <NA>       1    30  1438    11.8
 8 Amia_calva       Amia       calva        <NA>       1    40  1438    31.8
 9 Amia_calva       Amia       calva        <NA>       1    50  1438    15.6
10 Amia_calva       Amia       calva        <NA>       1    60  1438    32.1
# … with 575 more rows, and 47 more variables: alpha_Pos_raw <dbl>,
#   d_raw <dbl>, D_Pos_raw <dbl>, alpha_Ant_raw <dbl>, D_Ant_raw <dbl>,
#   CBL <dbl>, alpha_Pos <dbl>, d <dbl>, D_Pos <dbl>, alpha_Ant <dbl>,
#   D_Ant <dbl>, Pt1x <dbl>, Pt1y <dbl>, Pt2x <dbl>, Pt2y <dbl>, Pt3x <dbl>,
#   Pt3y <dbl>, Pt4x <dbl>, Pt4y <dbl>, Pt5x <dbl>, Pt5y <dbl>, Pt6x <dbl>,
#   Pt6y <dbl>, Pt7x <dbl>, Pt7y <dbl>, Body Shape <chr>,
#   Habitat_Initial <chr>, Habitat_Friedman <chr>, Habitat_FishBase <chr>, …

Find the matches in the full phylogeny.

fullvertmeas.species <- left_join(fullvertmeas, allspecies, by=c("MatchGenus"="Genus", "MatchSpecies"="Species"))

And check to see how many species we have. It should be the same number as those in the matchspecies data set, minus those we couldn’t match.

checkspecies <-
  fullvertmeas.species %>%
  filter(!is.na(Tip)) %>%
  distinct(Species, .keep_all = TRUE)
nrow(checkspecies) == nrow(filter(matchspecies, !is.na(MatchSpecies)))
[1] TRUE

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] here_1.0.1      rfishbase_3.1.9 phytools_0.7-80 maps_3.3.0     
 [5] ape_5.5         forcats_0.5.1   stringr_1.4.0   dplyr_1.0.7    
 [9] purrr_0.3.4     readr_2.0.1     tidyr_1.1.3     tibble_3.1.4   
[13] ggplot2_3.3.5   tidyverse_1.3.1

loaded via a namespace (and not attached):
 [1] nlme_3.1-153            fs_1.5.0                bit64_4.0.5            
 [4] lubridate_1.7.10        progress_1.2.2          httr_1.4.2             
 [7] rprojroot_2.0.2         gh_1.3.0                numDeriv_2016.8-1.1    
[10] tools_4.1.2             backports_1.2.1         utf8_1.2.2             
[13] R6_2.5.1                DBI_1.1.1               colorspace_2.0-2       
[16] withr_2.4.2             prettyunits_1.1.1       tidyselect_1.1.1       
[19] mnormt_2.0.2            phangorn_2.7.1          bit_4.0.4              
[22] curl_4.3.2              compiler_4.1.2          git2r_0.29.0           
[25] cli_3.0.1               rvest_1.0.1             expm_0.999-6           
[28] xml2_1.3.2              scales_1.1.1            quadprog_1.5-8         
[31] digest_0.6.27           rmarkdown_2.10          pkgconfig_2.0.3        
[34] htmltools_0.5.2         plotrix_3.8-2           dbplyr_2.1.1           
[37] fastmap_1.1.0           rlang_0.4.11            readxl_1.3.1           
[40] rstudioapi_0.13         generics_0.1.0          combinat_0.0-8         
[43] jsonlite_1.7.2          vroom_1.5.4             magrittr_2.0.1         
[46] Matrix_1.3-4            Rcpp_1.0.7              munsell_0.5.0          
[49] fansi_0.5.0             lifecycle_1.0.0         scatterplot3d_0.3-41   
[52] stringi_1.7.4           whisker_0.4             yaml_2.2.1             
[55] clusterGeneration_1.3.7 MASS_7.3-54             grid_4.1.2             
[58] parallel_4.1.2          promises_1.2.0.1        crayon_1.4.1           
[61] lattice_0.20-45         haven_2.4.3             hms_1.1.0              
[64] tmvnsim_1.0-2           knitr_1.34              pillar_1.6.2           
[67] igraph_1.2.6            codetools_0.2-18        fastmatch_1.1-3        
[70] reprex_2.0.1            glue_1.4.2              evaluate_0.14          
[73] arkdb_0.0.12            renv_0.14.0             modelr_0.1.8           
[76] vctrs_0.3.8             tzdb_0.1.2              httpuv_1.6.4           
[79] cellranger_1.1.0        gtable_0.3.0            assertthat_0.2.1       
[82] cachem_1.0.6            xfun_0.25               broom_0.7.9            
[85] coda_0.19-4             later_1.3.0             memoise_2.0.0          
[88] workflowr_1.7.0         ellipsis_0.3.2